• Title/Summary/Keyword: neutral element

Search Result 123, Processing Time 0.023 seconds

Analysis of high-speed vehicle-bridge interactions by a simplified 3-D model

  • Song, Myung-Kwan;Choi, Chang-Koon
    • Structural Engineering and Mechanics
    • /
    • v.13 no.5
    • /
    • pp.505-532
    • /
    • 2002
  • In this study, the analysis of high-speed vehicle-bridge interactions by a simplified 3-dimensional finite element model is performed. Since railroads are constructed mostly as double tracks, there exists eccentricity between the vehicle axle and the neutral axis of cross section of a railway bridge. Therefore, for the more efficient and accurate vehicle-bridge interaction analysis, the analysis model should include the eccentricity of axle loads and the effect of torsional forces acting on the bridge. The investigation into the influences of eccentricity of the vehicle axle loads and vehicle speed on vehicle-bridge interactions are carried out for two cases. In the first case, only one train moves on its track and in the other case, two trains move respectively on their tracks in the opposite direction. From the analysis results of an existing bridge, the efficiency and capability of the simplified 3-dimensional model for practical application can be also verified.

Bridging the gap between CAD and CAE using STL files

  • Bianconi, Francesco
    • International Journal of CAD/CAM
    • /
    • v.2 no.1
    • /
    • pp.55-67
    • /
    • 2002
  • In many areas of industry, it is desirable to have fast and reliable systems in order to quickly obtain suitable solid models for computer- aided analyses. Nevertheless it is well known that the data exchange process between CAD modelers and CAE packages can require significative efforts. This paper presents an approach for geometrical data exchange through triangulated boundary models. The proposed framework is founded on the use of STL file specification as neutral format file. This work is principally focused on data exchange among CAD modelers and FEA packages via STL. The proposed approach involves the definition of a topological structure suitable for the STL representation and the development of algorithms for topology and geometry data processing in order to get a solid model suitable for finite element analysis or other computer aided engineering purposes. Different algorithms for model processing are considered and their pros and cons are discussed. As a case study, a prototype modeler which supports an exporting filter for a commercial CAE package has been implemented.

Analysis of elastic wave propagation in long beam using Fourier transformation

  • Mohammad Tahaye Abadi
    • Structural Engineering and Mechanics
    • /
    • v.87 no.2
    • /
    • pp.165-172
    • /
    • 2023
  • This paper presents a novel method for modeling elastic wave propagation in long beams. The proposed method derives a solution for the transient transverse displacement of the beam's neutral axis without assuming the separation of variables (SV). By mapping the governing equation from the space domain to the frequency domain using Fourier transformation (FT), the transverse displacement function is determined as a convolution integral of external loading functions and a combination of trigonometric and Fresnel functions. This method determines the beam's response to general loading conditions as a linear combination of the analytical response of a beam subjected to an abrupt localized loading. The proposed solution method is verified through finite element analysis (FEA) and wave propagation patterns are derived for tone burst loading with specific frequency contents. The results demonstrate that the proposed solution method accurately models wave dispersion, reduces computational cost, and yields accurate results even for high-frequency loading.

A VARIANT OF D'ALEMBERT'S AND WILSON'S FUNCTIONAL EQUATIONS FOR MATRIX VALUED FUNCTIONS

  • Abdellatif Chahbi;Mohamed Chakiri;Elhoucien Elqorachi
    • Communications of the Korean Mathematical Society
    • /
    • v.39 no.3
    • /
    • pp.785-802
    • /
    • 2024
  • Given M a monoid with a neutral element e. We show that the solutions of d'Alembert's functional equation for n × n matrices Φ(pr, qs) + Φ(sp, rq) = 2Φ(r, s)Φ(p, q), p, q, r, s ∈ M are abelian. Furthermore, we prove under additional assumption that the solutions of the n-dimensional mixed vector-matrix Wilson's functional equation $$\begin{cases}f(pr, qs) + f(sp, rq) = 2\phi(r, s)f(p, q),\\Φ(p, q) = \phi(q, p),{\quad}p, q, r, s {\in} M\end{cases}$$ are abelian. As an application we solve the first functional equation on groups for the particular case of n = 3.

Influence of Malalignment on Tibial Post in Total Knee Replacement Using Posterior Stabilized Implant (슬관절 전치환술에서 후방 안정 임플란트의 오정렬이 경골 기둥에 미치는 영향)

  • Kim, Sang-Hoon;Ahn, Ok-Kyun;Bae, Dae-Kyung;Kim, Yoon-Hyuk;Kim, Kyung-Soo;Lee, Soon-Gul
    • Journal of Biomedical Engineering Research
    • /
    • v.28 no.1
    • /
    • pp.108-116
    • /
    • 2007
  • Recently, it has been reported that the posterior stabilized implant, which is clinically used for the total knee replacement (TKR), may have failure risk such as wear or fracture by the contact pressure and stress on the tibial post. The purpose of this study is to investigate the influence of the mal alignment of the posterior stabilized implant on the tibial post by estimating the distributions of contact pressure and von-Mises stress on a tibial post and to analyze the failure risk of the tibial post. Finite element models of a knee joint and an implant were developed from 1mm slices of CT images and 3D CAD software, respectively. The contact pressure and the von-Mises stress applying on the implant were analyzed by the finite element analysis in the neutral alignment as well as the 8 malalignment cases (3 and 5 degrees of valgus and varus angulations, and 2 and 4 degrees of anterior and posterior tilts). Loading condition at the 40% of one whole gait cycle such as 2000N of compressive load, 25N of anterior-posterior load, and 6.5Nm of torque was applied to the TKR models. Both the maximum contact pressure and the maximum von-Mises stress were concentrated on the anterior-medial region of the tibial post regardless of the malalignment, and their magnitudes increased as the degree of the malalignment increased. From present result, it is shown that the malalignment of the implant can influence on the failure risk of the tibial post.

Comparative Analysis of Fashion Characteristics on the Cover of Domestic Licensed Fashion Magazines - Focused on ELLE, VOGUE, W - (국내 라이선스 패션잡지 표지에 나타난 패션특성의 비교분석 - ELLE, VOGUE, W를 중심으로 -)

  • Lee, Hyunji;Lee, Kyunghee
    • Fashion & Textile Research Journal
    • /
    • v.21 no.1
    • /
    • pp.1-12
    • /
    • 2019
  • The purpose of this study is to examine the fashion characteristics of fashion magazine cover by comparing and analyzing the formative characteristics of fashion, visual design characteristics and illustration vocabulary on the cover of 3 fashion magazines. The data analysis criteria consisted of the formative elements of fashion (fashion design element, fashion coordination element) and visual design element (color, illustration lexical layout, model photograph type). Data analysis methods were statistical analysis, stepwise lexical analysis, and content analysis. The results of the study are as follows. First, the formative characteristics of fashion on the cover of fashion magazines show that ELLE is a feminine and elegant characteristics, VOGUE is a modern, chic and mannish characteristics, and W is avant-garde and neutral characteristics. Second, visual design characteristics on the cover of fashion magazines, ELLE and VOGUE use modern and simple modern sensibility by using monotonous background color and background color number, and W showed original image characteristic by using various colors. Third, as a result of the illustration lexical analysis on the cover of fashion magazines, 4 core keywords of trend, star, event, and life appeared in 3 magazines in common. Elle differentiates by innovation, Vogue by discrimination, W by reconstruction.

Dentoalveolar effects of open-bite correction with the dual action vertical intra-arch technique: A finite element analysis

  • Sergio Estelita Barros;Kelly Chiqueto;Franciele Alberton;Katherine Jaramillo Cevallos;Juliana Faria;Bianca Heck;Leonardo Machado;Pedro Noritomi
    • The korean journal of orthodontics
    • /
    • v.54 no.5
    • /
    • pp.316-324
    • /
    • 2024
  • Objective: To evaluate tooth displacement and periodontal stress generated by the dual action vertical intra-arch technique (DAVIT) for open-bite correction using three-dimensional finite element analysis. Methods: A three-dimensional model of the maxilla was created by modeling the cortical bone, cancellous bone, periodontal ligament, and teeth from the second molar to the central incisor of a hemiarch. All orthodontic devices were designed using specific software to reproduce their morpho-dimensional characteristics, and their physical properties were determined using Young's modulus and Poisson's coefficient of each material. A linear static simulation was performed to analyze the tooth displacements (mm) and maximum stresses (Mpa) induced in the periodontal ligament by the posterior intrusion and anterior extrusion forces generated by the DAVIT. Results: The first and second molars showed the greatest intrusion, whereas the canines and lateral incisors showed the greatest extrusion displacement. A neutral zone of displacement corresponding to the fulcrum of occlusal plane rotation was observed in the premolar region. Buccal tipping of the molars and lingual tipping of the anterior teeth occurred with intrusion and extrusion, respectively. Posterior intrusion generated compressive stress at the apex of the buccal roots and furcation of the molars, while anterior extrusion generated tensile stress at the apex and apical third of the palatal root surface of the incisors and canines. Conclusions: DAVIT mechanics produced a set of beneficial effects for open-bite correction, including molar intrusion, extrusion and palatal tipping of the anterior teeth, and occlusal plane rotation with posterior teeth uprighting.

Effects of Mg on corrosion resistance of Al galvanically coupled to Fe (Fe와 galvanic couple된 알루미늄의 내식성에 미치는 마그네슘의 영향)

  • Hyun, Youngmin;Kim, Heesan
    • Corrosion Science and Technology
    • /
    • v.12 no.1
    • /
    • pp.40-49
    • /
    • 2013
  • Effects of magnesium and pH on corrosion of aluminum galvanically coupled to iron have studied by using potentio- dynamic and static tests for polarization curves, Mott-Schottky test for analysis of semiconductor property, and GD-AES and XPS for film analysis. Pitting potential was sensitive to magnesium as an alloying element but not to pH, while passive current was sensitive to pH but not to magnesium. It was explained with, instead of point defect model (PDM), surface charge model describing that the ingression of chloride depends on the state of surface charge and passive film at film/solution interface is affected by pH. In addition, galvanic current of aluminum electrically coupled to iron was not affected by magnesium in pH 8.4, 0.2M citrate solution but was increased by magnesium at the solution of pH 9.1. The galvanic current at pH 9.1 increased with time at the initial stage and after the exposure of about 200 minute, decreased and stabilized. The behavior of the galvanic current was related with the concentration of magnesium at the surface. It agreed with the depletion of magnesium at the oxide surface by using glow discharge atomic emission spectroscopy (GD-AES). In addition, pitting potential of pure aluminum was reduced in neutral pH solution where chloride ion maybe are competitively adsorbed on pure aluminum. It was confirmed by the exponential decrease of pitting potential with log of [$Cl^-$] around 0.025 M of [$Cl^-$] and linear decrease of the pitting potential. From the above results, unlike magnesium, alloying elements with higher electron negativity, lowering isoelectric point (ISE), are recommended to be added to improve pitting corrosion resistance of aluminum and its alloys in neutral solutions as well as their galvanic corrosion resistance in weakly basic solutions.

Optimum Slab-Lifting Positions for Precast Concrete Pavement Construction (프리캐스트 콘크리트 포장 시공 시 최적 슬래브 리프팅 위치)

  • Kim, Seong-Min;Cho, Byoung-Hooi;Han, Seung-Hwan
    • International Journal of Highway Engineering
    • /
    • v.9 no.2 s.32
    • /
    • pp.27-37
    • /
    • 2007
  • This research was conducted to determine the optimum lifting positions on precast concrete slabs for precast concrete pavement construction, based on the analysis of concrete stress distribution under various lifting conditions. To analyze stresses in concrete slabs, the finite element method was implemented and a numerical model of the precast slab that was going to be used in the experimental construction was developed. Changes in the stress distribution due to the lifting angle were investigated because slab lifting is not always performed in the perpendicular direction to the slab surface. In addition, the effect of the lifting level, the distance between the neutral axis of the slab and the lifting point, on the stress distribution was investigated since the lifting point is not always at the neutral axis of the slab. To consider the actual steel design of the precast slab, the effect of the reinforcement near the lifting point was also investigated. From this study, the optimum lifting positions of the precast slabs were determined according to the lifting angle and level, and the results were compared with the lifting positions used in the PCI standards.

  • PDF

Comparison of Tibialis Anterior Muscle Thickness with 4 Different Toe and Ankle Postures: Ultrasonographic Study

  • Jang, Tae-Jin;Hwang, Byeong-Hun;Jeon, In-Cheol
    • The Journal of Korean Physical Therapy
    • /
    • v.34 no.1
    • /
    • pp.12-17
    • /
    • 2022
  • Purpose: Ankle dorsiflexion is an essential element of normal functions, including walking, activities of daily living and sport activities. The tibialis anterior (TA) muscle functioned as a dorsiflexor and as a dynamic stabilizer of the ankle joint during walking and jumping. This study aimed to compare TA muscle thickness using ultrasonography according to the four different toe and ankle postures for the selective TA strengthening exercise. Methods: This study were recruited 26 (males: 15, females: 11) aged 20-30 years, with no injury ankle and calf in the medical history, had normal dorsiflexion and inversion range of motion (ROM). The thickness of the TA muscle was measured by ultrasonography in the four different toe and ankle postures: 1. Ankle dorsiflexion with all toe extension and ankle inversion (ITEDF); 2. Ankle dorsiflexion with all toe flexion and ankle inversion (ITFDF); 3. Ankle dorsiflexion with all toe extension and neutral position (NTEDF); 4. Ankle dorsiflexion with all toe flexion and neutral position (NTFDF). One-way repeated analysis of variance (ANOVA) and Bonferroni correction were used to confirm the significant difference among conditions. The level of statistical significance was set at α=0.01. Results: TA muscle thickness with ITFDF was significantly greater than in any other ankle positions, including ITEDF, NTFDF, and NTEDF (p<0.01). Conclusion: Among the four toe and ankle postures, isometric contraction in ITFDF postures showed the greatest increase in thickness of TA rather than ITEDF, NTEDF, and NTFDF postures. Based on these results, ITFDF can be recommended in an efficient way to selectively strengthen TA muscle.