DOI QR코드

DOI QR Code

Fe와 galvanic couple된 알루미늄의 내식성에 미치는 마그네슘의 영향

Effects of Mg on corrosion resistance of Al galvanically coupled to Fe

  • 현영민 (홍익대학교 재료공학부) ;
  • 김희산 (홍익대학교 재료공학부)
  • Hyun, Youngmin (School of Mat. Sci. and Eng. Hongik University) ;
  • Kim, Heesan (School of Mat. Sci. and Eng. Hongik University)
  • 투고 : 2012.12.10
  • 심사 : 2013.02.27
  • 발행 : 2013.02.15

초록

Effects of magnesium and pH on corrosion of aluminum galvanically coupled to iron have studied by using potentio- dynamic and static tests for polarization curves, Mott-Schottky test for analysis of semiconductor property, and GD-AES and XPS for film analysis. Pitting potential was sensitive to magnesium as an alloying element but not to pH, while passive current was sensitive to pH but not to magnesium. It was explained with, instead of point defect model (PDM), surface charge model describing that the ingression of chloride depends on the state of surface charge and passive film at film/solution interface is affected by pH. In addition, galvanic current of aluminum electrically coupled to iron was not affected by magnesium in pH 8.4, 0.2M citrate solution but was increased by magnesium at the solution of pH 9.1. The galvanic current at pH 9.1 increased with time at the initial stage and after the exposure of about 200 minute, decreased and stabilized. The behavior of the galvanic current was related with the concentration of magnesium at the surface. It agreed with the depletion of magnesium at the oxide surface by using glow discharge atomic emission spectroscopy (GD-AES). In addition, pitting potential of pure aluminum was reduced in neutral pH solution where chloride ion maybe are competitively adsorbed on pure aluminum. It was confirmed by the exponential decrease of pitting potential with log of [$Cl^-$] around 0.025 M of [$Cl^-$] and linear decrease of the pitting potential. From the above results, unlike magnesium, alloying elements with higher electron negativity, lowering isoelectric point (ISE), are recommended to be added to improve pitting corrosion resistance of aluminum and its alloys in neutral solutions as well as their galvanic corrosion resistance in weakly basic solutions.

키워드

참고문헌

  1. Christian Vargel, Corrosion of Aluminum, pp. 17-57, Elsevier, New Nork (2004).
  2. Y.-H. Yoo, Ph. D. Thesis, p. 10, Sungkyunkwan University, Suwon (2011).
  3. Christian Vargel, Corrosion of Aluminum, pp. 62-64, Elsevier, New Nork (2004).
  4. E. Brillas, P. L. Cabot, F. Centellas, J. A. Garrido, E. Perez, and R. M. Rodriguez, Electrochim. Acta, 43(7), 799 (1998). https://doi.org/10.1016/S0013-4686(97)00266-1
  5. Metals handbook, 9th ed., Vol. 13, Corrosion, pp. 583-609, ASM, Metal Park, Ohio (1987).
  6. G. M. Scamans, N. J. H. Holroyd, and C. D. S. Tuck, Corros. Sci., 27, 329 (1987). https://doi.org/10.1016/0010-938X(87)90076-X
  7. W. C. Moshier, G. D. Davis, and G. O. Cote, J. Electrochem. Soc., 136, 356 (1989). https://doi.org/10.1149/1.2096635
  8. G. D. Davis, W. C. Moshier, T. L. Fritz, and G. O. Cote, J. Electrochem. Soc., 137, 422 (1990). https://doi.org/10.1149/1.2086456
  9. P. L. Cabot, F. Centellas, R. M. Rodriguez, E. Brillas, E. Perez, A. V. Benedetti, and P. T. A. Sumodjo, J. Appl. Electrochem., 22, 541 (1992). https://doi.org/10.1007/BF01024095
  10. P. L. Cabot, J. A. Garrido, E. Perez, A. H. Moreira, P. T. A. Sumodjo, and A. V. Benedetti, J. Appl. Electrochem., 25, 781 (1995). https://doi.org/10.1007/BF00648634
  11. J. A. Garrido, P. L. Cabot, A. H. Moreira, R. M. Rodriguez, P. T. A. Sumodjo, and E. Perez, Electrochim. Acta, 41, 1933 (1996). https://doi.org/10.1016/0013-4686(95)00481-5
  12. Y.-H. Yoo, Ph. D. Thesis, p. 5, Sungkyunkwan University, Suwon (2011).
  13. S.-J. Ahn, Ph. D. Thesis, p. 25, KAIST, Daejeon (2004).
  14. Y. Y. Andreev, S. V. Samarichev, and M.E. Goncharov, Russian J. of Electrochem, 30, 1216 (1994).
  15. M. C. Reboul, T.J. Warner, H. Mayet, and B. Baroux, Mater. Sci. Forum, 217-222, 1553 (1996).
  16. D. D. Macdonald, Pure Appl. Chem., 71, 951 (1999). https://doi.org/10.1351/pac199971060951
  17. E. McCafferty, J. Electrochem. Soc., 146, 2863 (1999). https://doi.org/10.1149/1.1392021
  18. J. O'M. Bockris and Y. Kang, J. Solid State Electrochem. Soc., 1, 17 (1997). https://doi.org/10.1007/s100080050019
  19. J. W. Schultze and A. W. Hassel, Corrosion and Oxide films Vol. 4 (edited by M. Stratmann and G.S. Frankel) in Encyclopedia of Electrochemistry, p. 234, Wiley-VCH, Germany (2003).
  20. J. W. Schultze and A.W. Hassel, Corrosion and Oxide films Vol. 4 (edited by M. Stratmann and G.S. Frankel) in Encyclopedia of Electrochemistry, p. 234, Wiley-VCH, Germany (2003).
  21. S. Y. Yu, W. E. O'Grady, D. E. Ramaker, and P. M. Natishan, J. Electrochem. Soc., 147, 2952 (2000). https://doi.org/10.1149/1.1393630
  22. S. F. Matar, G. Camper, and M. A. Subramanian, Prog. Solid State Chem. 39, 70 (2011). https://doi.org/10.1016/j.progsolidstchem.2011.04.002
  23. J. W. Schultze and M. M. Lohrengel, Electrochim. Acta, 45, 2499 (2000). https://doi.org/10.1016/S0013-4686(00)00347-9
  24. A. Kolics, A. S. Besing, P. baradlai, R. Haasch, and A. Weickowski, J. Electrochem. Soc., 148, B251 (2001). https://doi.org/10.1149/1.1376118

피인용 문헌

  1. A Study on the Corrosion Behaviors of CFRP and High Vacuum Die Casting Aluminum Alloy Specimens by Varying Surface Conditions vol.28, pp.2, 2013, https://doi.org/10.7467/ksae.2020.28.2.093