Commun. Korean Math. Soc. 39 (2024), No. 3, pp. 785–802 https://doi.org/10.4134/CKMS.c220073 pISSN: 1225-1763 / eISSN: 2234-3024

A VARIANT OF D'ALEMBERT'S AND WILSON'S FUNCTIONAL EQUATIONS FOR MATRIX VALUED **FUNCTIONS**

Abdellatif Chahbi, Mohamed Chakiri, and Elhoucien Elqorachi

ABSTRACT. Given M a monoid with a neutral element e . We show that the solutions of d'Alembert's functional equation for $n \times n$ matrices

$$
\Phi(pr,qs) + \Phi(sp,rq) = 2\Phi(r,s)\Phi(p,q), \quad p,q,r,s \in M
$$

are abelian. Furthermore, we prove under additional assumption that the solutions of the n-dimensional mixed vector-matrix Wilson's functional equation

$$
\begin{cases}\nf(pr,qs) + f(sp,rq) = 2\Phi(r,s)f(p,q), \\
\Phi(p,q) = \Phi(q,p), \quad p,q,r,s \in M\n\end{cases}
$$

are abelian. As an application we solve the first functional equation on groups for the particular case of $n = 3$.

1. Introduction

During their investigations of distance measures, Chung, Kannappan, Ng, and Sahoo [\[6,](#page-16-0) Lemma 2.2] found the solutions $f : [0,1] \times]0,1] \rightarrow \mathbb{R}$ of the functional equation

$$
(1.1) \t f(pr, qs) + f(sp, rq) = f(p, q)f(r, s), \t p, q, r, s \in]0, 1[.
$$

In [\[16\]](#page-17-0) Stetkær obtained the general solution $f : S \longrightarrow \mathbb{C}$ of the variant of d'Alembert's functional equation

$$
(1.2) \t f(xy) + f(\sigma(y)x) = 2f(x)f(y), \quad x, y \in S
$$

on a possibly non-commutative semigroup S, where $\sigma : S \longrightarrow S$ is an involutive automorphism. That is $\sigma(xy) = \sigma(x)\sigma(y)$ and $\sigma(\sigma(x)) = x$ for all $x, y \in S$. The solutions of [\(1.2\)](#page-0-0) are the functions $f = \frac{\chi + \chi \circ \sigma}{2}$, where $\chi : S \longrightarrow \mathbb{C}$ is a multiplicative function.

If S is a semigroup, then the switch map $\sigma(x, y) := (y, x)$ is an involutive automorphism of the product semigroup $S \times S$. By help of σ and the

©2024 Korean Mathematical Society

785

Received March 13, 2022; Revised September 12, 2022; Accepted April 5, 2024.

²⁰²⁰ Mathematics Subject Classification. 39B52, 39B42, 39B32.

Key words and phrases. Topological group, monoid, D'Alembert's equation, Wilson's equation, matrix, automorphism, involution.

component-wise multiplication $(p, q)(r, s) = (pr, qs)$ we reformulate [\(1.1\)](#page-0-1) as

$$
f((p,q)(r,s)) + f(\sigma(r,s)(p,q)) = f(p,q)f(r,s), \quad (p,q),(r,s) \in S \times S.
$$

Then [\(1.1\)](#page-0-1) is a special instance of [\(1.2\)](#page-0-0), if we work with $q = f/2$ instead of f.

In this paper we study the n-dimensional version of the variant of d'Alembert's functional equation

(1.3)
$$
\Phi(pr,qs) + \Phi(sp,rq) = 2\Phi(r,s)\Phi(p,q) \quad p,q,r,s \in M,
$$

and the vector-matrix variant of Wilson's functional equation

(1.4)
$$
\begin{cases} f(pr,qs) + f(sp,rq) = 2\Phi(r,s)f(p,q), \\ \Phi(p,q) = \Phi(q,p), \quad p,q,r,s \in M, \end{cases}
$$

where M is a monoid, $f: M \times M \longrightarrow \mathbb{C}^n$, $\Phi: M \times M \longrightarrow M_n(\mathbb{C})$ are the unknown functions.

Our first purpose is to prove that the solutions Φ of the functional equation [\(1.3\)](#page-1-0) are abelian as well as showing that the solutions (f, Φ) of the functional equation (1.4) are abelian since the components of f are linearly independent. Moreover, we find that f remains an abelian function even if we avoid the last condition. Secondly, as an application we solve the functional equation [\(1.3\)](#page-1-0) on groups for the particular case $n = 3$.

The matrix or even operator version of d'Alembert's functional equation

(1.5)
$$
\Phi(xy) + \Phi(\sigma(y)x) = 2\Phi(y)\Phi(x), \quad x, y \in M,
$$

on abelian groups $M = G$ with $\sigma = -id$ and $\Phi(e) = I$ has been treated by Fattorini [\[8\]](#page-16-1), Kurepa [\[11\]](#page-16-2), Baker and Davidson [\[1\]](#page-16-3), Kisyński [\[9,](#page-16-4)[10\]](#page-16-5), Székelyhidi [\[17\]](#page-17-1), Chojnacki [\[4,](#page-16-6) [5\]](#page-16-7), Sinopoulos [\[12,](#page-16-8) [13\]](#page-16-9) and Stetkær [\[15\]](#page-17-2), Bouikhalene, Elqo-rachi and Manar [\[2\]](#page-16-10) for general involutions σ . In non-abelian groups and non abelian monoids generated by their squares, the solutions of [\(1.5\)](#page-1-2) taking their values in $\mathcal{M}_2(\mathbb{C})$ were recently obtained by Chahbi and Elqorachi [\[3\]](#page-16-11). The solutions described in [\[3\]](#page-16-11) are not necessarily abelian.

Wilson's functional equation has been studied in the mixed vector-matrix form

$$
(1.6) \t f(xy) + f(\sigma(y)x) = 2\Phi(y)f(x), \quad x, y \in G,
$$

by P. Sinopoulos [\[12,](#page-16-8) [13\]](#page-16-9), with $\sigma(x) = x^{-1}, x \in G$, by Stetkær [\[15\]](#page-17-2) as well as Bouikhalene, Elqorachi and Manar [\[2\]](#page-16-10) with a general involutive automorphism σ on abelian groups.

The solutions of (1.6) taking their values in \mathbb{C}^2 are obtained in [\[3\]](#page-16-11) under the condition that Φ is a solution of d'Alembert's matrix functional equation [\(1.5\)](#page-1-2).

2. Notation, terminology and some preliminary results

In this section we present a general set-up and auxiliary results which will be used in the next sections.

A VARIANT OF D'ALEMBERT'S AND WILSON'S FUNCTIONAL EQUATIONS 787

Notation and terminology

Throughout this paper S denotes an arbitrary semigroup, while M and G are respectively a monoid and a group with neutral element e.

 $\sigma : S \longrightarrow S$ will be any involutive automorphism. For the sake of convenience, we will denote $G \times G$ by \overline{G} , $M \times M$ by \overline{M} and (e, e) by e. Then \overline{G} (or \overline{M}) is a group (or a monoid) with a neutral element **e** under component-wise multiplication. That is, $(p,q)(r,s) = (pr, qs)$. We denote by $\mathscr{M}(G)$ the set of all homomorphisms $\mu: G \longrightarrow \mathbb{C}$ on G valued in $(\mathbb{C}, \cdot): \mu(xy) = \mu(x)\mu(y)$ for all $x, y \in G$, and $\mathcal{M}^+(G) := \{ \mu \in \mathcal{M}(G) : \mu \circ \sigma = \mu \}$. Let $\mathcal{A}(G)$ be the set of all additive maps $a: G \longrightarrow \mathbb{C}$ of G into $(\mathbb{C}, +): a(xy) = a(x) + a(y)$ for all $x, y \in G$, and $\mathcal{A}^{\pm}(G) := \{a \in \mathscr{A}(G) : a \circ \sigma = \pm a\}.$ $\mathscr{S}(G)$ denotes the set of maps $Q: G \to \mathbb{C}$ defined by $Q(x) = q(x, x), x \in G$, with $q: G \times G \to \mathbb{C}$ being a symmetric bi-additive map and $\mathscr{S}^{-1}(G)$ is the subset of $\mathscr{S}(G)$ for which q satisfies $q(\sigma(x), y) = -q(x, y)$ for any $x, y \in G$. For a function f, the new functions $f^e := \frac{f+f\circ\sigma}{2}$ and $f^o := \frac{f-f\circ\sigma}{2}$ denote respectively the even and the odd part of f .

 \mathcal{F}_n denotes the set of all \mathbb{C}^n -valued functions on M with linearly independent components. We should note for $f : M \longrightarrow \mathbb{C}^n$ that $f \in \mathcal{F}_n \iff$ span $\{f(x)|x \in M\} = \mathbb{C}^n$. We define that a function f on S is abelian if f is central: $f(xy) = f(yx)$ for all $x, y \in S$, and f satisfies the Kannappan condition: $f(xyz) = f(xzy)$ for all $x, y, z \in S$. Finally, $\mathcal{M}_n(\mathbb{C})$ is the set of all $n \times n$ matrices over \mathbb{C} , $GL(n,\mathbb{C})$ is the group of $n \times n$ invertible matrices, I_n is the unit matrix of $\mathcal{M}_n(\mathbb{C})$ and the transpose of a matrix A is denoted by A^T .

The next lemma was obtained in [\[3\]](#page-16-11).

Lemma 2.1. Let σ be an involutive automorphism of M. If $\Phi : M \longrightarrow M_n(\mathbb{C})$ is a solution of the functional equation

(2.1)
$$
\begin{cases} \Phi(xy) + \Phi(\sigma(y)x) = 2\Phi(x)\Phi(y), & x, y \in M, \\ \Phi(e) = I_n. \end{cases}
$$

Then

$$
(i) \Phi \circ \sigma = \Phi
$$

(ii) $\Phi(x)\Phi(y) = \Phi(y)\Phi(x)$ for all $x, y \in M$.

Remark 1. The Lemma [2.1](#page-2-0) remains true for the following variant of d'Alembert's matrix functional equation:

(2.2)
$$
\begin{cases} \Phi(xy) + \Phi(\sigma(y)x) = 2\Phi(y)\Phi(x) & x, y \in M \\ \Phi(e) = I_n. \end{cases}
$$

Lemma 2.2. Let $\Phi : M \longrightarrow M_n(\mathbb{C})$ be a central solution of [\(2.1\)](#page-2-1) or of [\(2.2\)](#page-2-2), then Φ is abelian.

Proof. Replacing x by xy and y by z in (2.1) we get

$$
\Phi(xyz) = 2\Phi(xy)\Phi(z) - \Phi(\sigma(z)xy).
$$

Applying [\(2.1\)](#page-2-1) to the term $\Phi(\sigma(z)xy)$ gives

$$
\Phi(yz\sigma(x)) + \Phi(\sigma(z)xy) = 2\Phi(y)\Phi(\sigma(z)x).
$$

So we get

$$
\Phi(xyz) = 2\Phi(xy)\Phi(z) + \Phi(yz\sigma(x)) - 2\Phi(y)\Phi(z\sigma(x)).
$$

Doing the same for the terms $\Phi(yz\sigma(x))$ and $\Phi(z\sigma(x))$ leads to

$$
\Phi(xyz) = 2\Phi(xy)\Phi(z) + 2\Phi(yz)\Phi(\sigma(x)) - \Phi(xyz)
$$

$$
- 4\Phi(y)\Phi(z)\Phi(\sigma(x)) + 2\Phi(y)\Phi(xz).
$$

Taking into account ((i), Lemma [2.1\)](#page-2-0) that $\Phi \circ \sigma = \Phi$ we obtain the identity

$$
\Phi(xyz) = \Phi(x)\Phi(yz) + \Phi(y)\Phi(xz) + \Phi(z)\Phi(xy) - 2\Phi(y)\Phi(z)\Phi(x),
$$

for all $x, y, z \in M$. Since $\Phi(x), \Phi(y)$ and $\Phi(z)$ commute with each other and Φ is central, we deduce that $\Phi(xyz) = \Phi(xzy)$ for all $x, y, z \in M$, which implies that Φ is abelian. \Box

Proposition 2.1. Let the pair $f : M \longrightarrow \mathbb{C}^n, \Phi : M \longrightarrow \mathcal{M}_n(\mathbb{C})$ be a solution of the matrix variant of Wilson's functional equation

(2.3)
$$
f(xy) + f(\sigma(y)x) = 2\Phi(y)f(x) \quad x, y \in M
$$

such that

(2.4)
$$
\begin{cases} \Phi(x)\Phi(y)f(e) = \Phi(y)\Phi(x)f(e), \\ \Phi(xy)f(e) = \Phi(yx)f(e) \quad \text{for all } x, y \in M. \end{cases}
$$

Then

(1) For all
$$
y \in M
$$

$$
(2.5) \qquad \Phi(y)(span\{f(x)\in \mathbb{C}^n|x\in M\})\subseteq span\{f(x)\in \mathbb{C}^n|x\in M\}.
$$

 (2) *f* is central.

(3) The restriction Ψ of Φ to $U := span{f(x) \in \mathbb{C}^n | x \in M}$ is a solution of the matrix variant of d'Alembert's functional equation

(2.6)
$$
\Psi(xy) + \Psi(x\sigma(y)) = 2\Psi(y)\Psi(x), \quad x, y \in M
$$

satisfying $\Psi(e) = I_n|_U$.

(4) If $f \in \mathcal{F}_n$ then Φ is a solution of the functional equation

(2.7)
$$
\begin{cases} \Phi(xy) + \Phi(x\sigma(y)) = 2\Phi(y)\Phi(x), & x, y \in M, \\ \Phi(e) = I_n. \end{cases}
$$

Proof. It follows directly from [\(2.3\)](#page-3-0) that $\Phi(y)$ leaves the space span $\{f(x) \in$ $\mathbb{C}^n|x \in M$ invariant.

To prove the second statement we will need the following:

Lemma 2.3. Let the pair $f : M \longrightarrow \mathbb{C}^n, \Phi : M \longrightarrow \mathcal{M}_n(\mathbb{C})$ be a solution of the functional equation [\(2.3\)](#page-3-0). Then the identity

(2.8)
$$
f(xyz) = \Phi(z)f(xy) + \Phi(y)f(xz) + \Phi(yz)f(x) - 2\Phi(y)\Phi(z)f(x),
$$

holds for all $x, y, z \in M$.

Proof. By replacing x by xy and y by z, equation (2.3) becomes

$$
f((xy)z) + f(\sigma(z)xy) = 2\Phi(z)f(xy) \quad x, y, z \in M.
$$

If we replace y by yz in (2.3) we get

$$
f(x(yz)) + f(\sigma(y)\sigma(z)x) = 2\Phi(yz)f(x), \quad x, y, z \in M.
$$

By replacing x by $\sigma(z)x$ in [\(2.3\)](#page-3-0) we obtain

$$
f(\sigma(z)xy) + f(\sigma(y)\sigma(z)x) = 2\Phi(y)f(\sigma(z)x)
$$

= 2\Phi(y)[2\Phi(z)f(x) - f(xz)], x, y, z \in M.

Subtracting the last identity from the sum of the two firsts gives the desired identity. \Box

Rest of proof of Proposition [2.1.](#page-3-1) By replacing x by e in (2.8) we find that

$$
f(yz)=\Phi(z)f(y)+\Phi(y)f(z)+\Phi(yz)f(e)-2\Phi(y)\Phi(z)f(e),\quad x,y,z\in M.
$$

Since (2.4) holds, the centrality of f is immediate. Adding the two identities that we obtain from [\(2.3\)](#page-3-0) by replacing y by yz and $y\sigma(z)$ respectively we find that

(2.9)
$$
f(xyz) + f(\sigma(y)\sigma(z)x) + f(xy\sigma(z)) + f(\sigma(y)zx)
$$

$$
= 2[\Phi(yz) + \Phi(y\sigma(z))]f(x).
$$

Taking into account that f is central we can rewrite (2.9) as follows

(2.10)
$$
f(xyz) + f(\sigma(z)xy) + f(x\sigma(y)z) + f(\sigma(z)x\sigma(y))
$$

$$
= 2[\Phi(yz) + \Phi(y\sigma(z))]f(x).
$$

Using (2.3) again, (2.10) becomes

$$
2\Phi(z)[f(xy) + f(x\sigma(y))] = 2[\Phi(yz) + \Phi(y\sigma(z))]f(x),
$$

which implies that

$$
[\Phi(yz) + \Phi(y\sigma(z))]f(x) = 2\Phi(z)\Phi(y)f(x)
$$
 for all $x, y, z \in M$.

This shows that Ψ is a solution of the functional equation [\(2.6\)](#page-3-3). Putting $y = e$ in the original functional equation [\(2.3\)](#page-3-0) we see that $\Psi(e) = I_n$ on span ${f(x) \in \mathbb{C}^n | x \in M}$. This proves (3), and consequently (4) holds since $f \in \mathcal{F}_n$.

3. A variant of d'Alembert's functional equation for matrices

At first, it is interesting to recall that the solutions $\Phi: G \longrightarrow M_2(\mathbb{C})$ of [\(1.5\)](#page-1-2) with $\Phi(e) = I_2$ for a general involutive automorphism are not necessarily abelian (see [\[3\]](#page-16-11) p. 13 for more details). By contrast, the main result of the present section is the fact that any solution of equation [\(1.3\)](#page-1-0) (which is an instance of (1.5) is abelian. This allows us to give in this case an exhaustive list of solutions of the functional equation [\(1.3\)](#page-1-0) for the particular case $n = 3$.

Proposition 3.1. Let $\Phi : \overline{M} \longrightarrow \mathcal{M}_n(\mathbb{C})$ be a solution of [\(1.3\)](#page-1-0) satisfying $\Phi(e, e) = I_n$. Then Φ is an abelian function.

Proof. Let $\Phi : \overline{M} \longrightarrow \mathcal{M}_n(\mathbb{C})$ be a solution of [\(1.3\)](#page-1-0). Letting $p = q = e$ in (1.3) shows that Φ is symmetric: That is $\Phi(s, r) = \Phi(r, s)$ for all $r, s \in M$. Now, setting $q = s = e$ in [\(1.3\)](#page-1-0) and taking into account Remark [1](#page-2-3) we get

(3.1)
$$
\Phi(pr,e) + \Phi(p,r) = 2\Phi(p,e)\Phi(r,e) \text{ for all } p,r \in M
$$

Defining a function $g : M \longrightarrow M_n(\mathbb{C})$ by $g := \Phi(\cdot, e)$, the equation [\(3.1\)](#page-5-0) can be written as the following

(3.2)
$$
\Phi(p,r) = 2g(p)g(r) - g(pr) \text{ for all } p, r \in M.
$$

Since Φ is symmetric, we have

(3.3)
$$
\Phi(p,r) = 2g(r)g(p) - g(rp) \text{ for all } p, r \in M.
$$

Subtracting [\(3.3\)](#page-5-1) from [\(3.2\)](#page-5-2) and using Remark [1](#page-2-3) yield

$$
g(pr) = g(rp)
$$
 for all $p, r \in M$.

Hence g is central. Now, switching p and q in [\(1.3\)](#page-1-0) and using the fact that Φ is symmetric we get

$$
\Phi(qr, ps) + \Phi(sq, rp) = 2\Phi(p, q)\Phi(r, s) \text{ for all } p, q, r, s \in M.
$$

Then

$$
\Phi(pr,qs) + \Phi(sp,rq) = \Phi(qr,ps) + \Phi(sq,rp)
$$
 for all $p,q,r,s \in M$.

Using (3.2) we get

$$
2g(pr)g(qs) - g(prqs) + 2g(sp)g(rq) - g(sprq)
$$

=
$$
2g(qr)g(ps) - g(qrps) + 2g(sq)g(rp) - g(sqrp)
$$

for all $p, r, q, s \in M$. Since q is central and satisfies $q(a)q(b) = q(b)q(a)$ for all $a, b \in M$, it simplifies to

$$
g(prqs) = g(qrps) = g(rpsq)
$$
 for all $p, q, r, s \in M$.

Using [\(3.2\)](#page-5-2) to compute $\Phi(pr,qs)$ and $\Phi(rp,sq)$ we get

$$
\Phi(pr,qs) = 2g(pr)g(qs) - g(prqs)
$$
 for all $p, q, r, s \in M$,

and

$$
\Phi(rp, sq) = 2g(rp)g(sq) - g(rpsq)
$$
 for all $p, q, r, s \in M$.

Consequently, it follows

$$
\Phi(pr,qs) = \Phi(rp,sq) \text{ for all } p,q,r,s \in M,
$$

or equivalently

$$
\Phi((p,q)(r,s)) = \Phi((r,s)(p,q))
$$
 for all $(p,q),(r,s) \in \overline{M}$.

This shows that Φ is central. Finally, with the condition $\Phi(e, e) = I_n$ equation (1.3) is an instance of (2.2) , so we can use Lemma [2.2](#page-2-4) to obtain the desired r esult. \Box

Let $\Phi : \overline{M} \longrightarrow \mathcal{M}_n(\mathbb{C})$ be a solution of [\(1.3\)](#page-1-0). Putting $x = y = e$ in (1.3) shows that $\Phi(\mathbf{e})\Phi(\mathbf{e}) = \Phi(\mathbf{e})$, from which we see that $\Phi(\mathbf{e})$ is a projection. So there are $n + 1$ possibilities: $\Phi(\mathbf{e}) = I_n$, $\Phi(\mathbf{e})$ is a k-dimensional projection for $k \in \{1; 2; \ldots; n-1\}$, or $\Phi(\mathbf{e}) = 0$. However, the last possibility is uninteresting because it implies that $\Phi = 0$. The case $\Phi(\mathbf{e}) = I_n$ was covered in Theorem [3.2](#page-7-0) above, while the other cases are treated in Proposition [3.2](#page-6-0) below.

Proposition 3.2. Let $\Phi : \overline{M} \longrightarrow \mathcal{M}_n(\mathbb{C})$ be a solution of [\(1.3\)](#page-1-0) such that $\Phi(e, e)$ is an k-dimensional projection for $k \in \{1; 2; \ldots; n-1\}$. Then Φ is an abelian function.

Proof. Recalling that (1.3) is an instance of (1.5) , then (1.3) can be reformulated as follows:

(3.4)
$$
\Phi(xy) + \Phi(\sigma(y)x) = 2\Phi(y)\Phi(x) \quad x, y \in \overline{M}.
$$

Up to a similarity the k-projection $\Phi(e)$ has the form

(3.5)
$$
\Phi(\mathbf{e}) = (\theta_{ij})_{i,j \in \{1,2,\dots,n\}} \text{ such that } \theta_{ij} = \begin{cases} \delta_i^j \text{ if } i; j \in \{1,2,\dots,k\}, \\ 0 \text{ otherwise,} \end{cases}
$$

for $k \in \{1, 2, \ldots, n-1\}$, where δ_i^j is the delta Kronecker. Discarding for simplicity of writing the similarity matrix we assume that $\Phi(\mathbf{e})$ is one of these $n-1$ matrices. We use the notation

(3.6)
$$
\Phi = (\phi_{ij})_{i,j \in \{1,2,...,n\}}.
$$

If $\Phi(\mathbf{e})$ has the form [\(3.5\)](#page-6-1) then $\phi_{ij}(\mathbf{e}) = \delta_i^j$ for $i, j \in \{1, 2, ..., k\}$ and by putting $y = e$ in [\(3.4\)](#page-6-2) we get that $\phi_{ij} = 0$ for $i \in \{k+1, k+2, \ldots, n\}, j \in \{1, 2, \ldots, n\}.$ Then identity [\(3.4\)](#page-6-2) means that the block matrix $\Phi_k := (\phi_{ij})_{i,j\in\{1,2,\ldots,k\}}$ is a solution of k-dimensional variant of d'Alembert's functional equations:

(3.7)
$$
\begin{cases} \Phi_k(xy) + \Phi_k(\sigma(y)x) = 2\Phi_k(y)\Phi_k(x) & x, y \in \overline{M}, \\ \Phi_k(\mathbf{e}) = I_k. \end{cases}
$$

And for $l \in \{k+1, k+2, \ldots, n\}$ the vectors $\varphi_l := [\phi_{1l}, \phi_{2l}, \ldots, \phi_{kl}]^T$ are solutions of the $n - k$ k-dimensional Wilson functional equations

(3.8)
$$
\varphi_l(xy) + \varphi_l(\sigma(y)x) = 2\Phi_k(y)\varphi_l(x) \quad x, y \in M.
$$

According to Proposition [3.1,](#page-5-3) Φ_k is abelian. Then by using the identity [\(2.8\)](#page-4-0) of Lemma [2.3,](#page-4-3) the functional equations [\(3.8\)](#page-6-3) shows that the $n - k$ vectors φ_l are also abelian. Consequently Φ is abelian. This completes the proof. \Box

Theorem 3.1. Let $\Phi : \overline{M} \longrightarrow \mathcal{M}_n(\mathbb{C})$ be a solution of [\(1.3\)](#page-1-0). Then Φ is an abelian function.

Proof. The theorem is an immediate consequence of Proposition [3.1](#page-5-3) and Propo-sition [3.2.](#page-6-0) \Box

Theorem 3.2. Let $\Phi : \overline{G} \longrightarrow M_3(\mathbb{C})$ be a solution of the matrix functional equation [\(1.3\)](#page-1-0) satisfying $\Phi(e, e) = I_3$. Then there exists $C \in GL(3, \mathbb{C})$ such that Φ has one of the following 9 forms: (i)

(3.9)
$$
\Phi = C \begin{pmatrix} (\mu + \mu \circ \sigma)/2 & 0 & 0 \\ 0 & (\gamma + \gamma \circ \sigma)/2 & 0 \\ 0 & 0 & (\eta + \eta \circ \sigma)/2 \end{pmatrix} C^{-1},
$$

where $\left(\frac{\mu+\mu\circ\sigma}{2}\right)(p,q) = \frac{\mu_1(p)\mu_2(q)+\mu_1(q)\mu_2(p)}{2}, p,q \in G, \left(\frac{\gamma+\gamma\circ\sigma}{2}\right)(p,q) =$ $\frac{\gamma_1(p)\gamma_2(q)+\gamma_1(q)\gamma_2(p)}{2}$, $p, q \in G$ and $\left(\frac{\eta+\eta\circ\sigma}{2}\right)(p,q) = \frac{\eta_1(p)\eta_2(q)+\eta_1(q)\eta_2(p)}{2}$, $p, q \in G$ such that $\mu, \gamma, \eta \in \mathcal{M}(\overline{G}) \setminus \{0\}$ and $\mu_1, \mu_2, \gamma_1, \gamma_2, \eta_1, \eta_2 \in \mathcal{M}(G) \setminus \{0\}$. (ii)

(3.10)
$$
\Phi = C \begin{pmatrix} \mu^+ & \mu^+(a^+ + Q^-) & 0 \\ 0 & \mu^+ & 0 \\ 0 & 0 & (\eta + \eta \circ \sigma)/2 \end{pmatrix} C^{-1},
$$

where $\mu^+(p,q) = \mu_0(pq)$, $p,q \in G$, $a^+(p,q) = a_0(pq)$, $p,q \in G$, $Q^-(p,q) =$ $\psi_0(pq^{-1}), p, q \in G$ and $\left(\frac{\eta + \eta \circ \sigma}{2}\right)(p, q) = \frac{\eta_1(p)\eta_2(q) + \eta_1(q)\eta_2(p)}{2}, p, q \in G$ such that $\mu^+\in \mathscr{M}^+(\overline{G})\setminus\{0\},\ \eta\in \mathscr{M}(\overline{G})\setminus\{0\},\ \mu_0,\eta_1,\eta_2\in \mathscr{M}(G)\setminus\{0\},\ a^+\in \mathscr{A}^+(\overline{G}),$ $a_0 \in \mathscr{A}(G), Q^- \in \mathscr{S}^-(\overline{G})$ and $\psi_0 \in \mathscr{S}(G)$. Furthermore $a^+ + Q^- \neq 0$. (iii)

(3.11)
$$
\Phi = C \begin{pmatrix} \frac{\mu + \mu \circ \sigma}{2} & \frac{\mu + \mu \circ \sigma}{2} a^+ + \frac{\mu - \mu \circ \sigma}{2} a^- & 0\\ 0 & \frac{\mu + \mu \circ \sigma}{2} & 0\\ 0 & 0 & \frac{\eta + \eta \circ \sigma}{2} \end{pmatrix} C^{-1},
$$

where $\left(\frac{\mu \pm \mu \circ \sigma}{2}\right)(p,q) = \frac{\mu_1(p)\mu_2(q) \pm \mu_1(q)\mu_2(p)}{2}, p,q \in G, \left(\frac{\eta + \eta \circ \sigma}{2}\right)(p,q) =$ $\frac{\eta_1(p)\eta_2(q)+\eta_1(q)\eta_2(p)}{2}$, $p, q \in G$, $a^+(p,q) = a_0(pq)$, $p, q \in G$, $a^-(p,q) = a_1(pq^{-1})$ $p, q \in G$ such that $\mu, \eta \in \mathscr{M}(\overline{G}) \setminus \{0\}$ with $\mu \neq \mu \circ \sigma$, $\mu_1, \mu_2, \eta_1, \eta_1 \in \mathscr{M}(G) \setminus \{0\}$ with $\mu_1 \neq \mu_2$ and $a_0, a_1 \in \mathcal{A}(G)$. (iv)

(3.12)
$$
\Phi = C \begin{pmatrix} \mu^+ & 0 & \mu^+ (a_1^+ + Q_1^-) \\ 0 & \mu^+ & \mu^+ (a_2^+ + Q_2^-) \\ 0 & 0 & \mu^+ \end{pmatrix} C^{-1},
$$

where $\mu^+(p,q) = \mu_0(pq)$, $p,q \in G$, $a_i^+(p,q) = b_i(pq)$, $p,q \in G$ and $Q_i^-(p,q) =$ $\psi_i(pq^{-1}) p, q \in G$ such that $\mu^+ \in \mathcal{M}^+(\overline{G}) \setminus \{0\}, \mu_0 \in \mathcal{M}(G) \setminus \{0\}, a_i^+ \in \mathcal{A}^+(\overline{G}),$ $a_0 \in \mathscr{A}(G), b_i \in \mathscr{A}(G), Q_i^- \in \mathscr{S}^-(\overline{G})$ and $\psi_i \in \mathscr{S}(G)$ for $i=1, 2$. (v)

(3.13)
$$
\Phi = C \begin{pmatrix} \mu^+ & \mu^+ (a_2^+ + Q_2^-) & \mu^+ (a_1^+ + Q_1^-) \\ 0 & \mu^+ & 0 \\ 0 & 0 & \mu^+ \end{pmatrix} C^{-1},
$$

where $\mu^+(p,q) = \mu_0(pq)$, $p, q \in G$, $a_i^+(p,q) = b_i(pq)$, $p, q \in G$ and $Q_i^-(p,q) =$ $\psi_i(pq^{-1}) p, q \in G$ such that $\mu^+ \in \mathcal{M}^+(\overline{G}) \setminus \{0\}, \mu_0 \in \mathcal{M}(G) \setminus \{0\}, a_i^+ \in \mathcal{A}^+(\overline{G}),$ $a_0 \in \mathscr{A}(G), b_i \in \mathscr{A}(G), Q_i^- \in \mathscr{S}^-(\overline{G})$ and $\psi_i \in \mathscr{S}(G)$ for $i=1, 2$. (vi) (3.14) $\Phi = C$ $\sqrt{2}$ $\overline{}$ μ^+ $d^{-1}\mu^+(a^+ + (a^-)^2)$ $\mu^+(\frac{(a^+)^2}{2} + a^+(a^-)^2 + \frac{(a^-)^4}{6} + a^+_1 + Q^-)$ 0 μ^+ $d\mu^+(a^+ + (a^-)^2)$ 0 μ^+ A. $\Bigg| C^{-1},$

where $\mu^+(p,q) = \mu_0(pq)$, $p, q \in G$, $a^+(p,q) = b(pq)$ $p, q \in G$, $a^+_1(p,q) = b_1(pq)$, $p, q \in G$, $a^-(p,q) = b_0(pq^{-1})$ and $Q^-(p,q) = \psi_0(pq^{-1})$, $p, q \in G$ such that $\mu^+ \in \mathscr{M}^+(\overline{G}) \setminus \{0\}, \ \mu_0 \in \mathscr{M}(G) \setminus \{0\}, \ a^+, a_1^+ \in \mathscr{A}^+(\overline{G}), \ a^- \in \mathscr{A}^-(\overline{G}),$ $b, b_0, b_1 \in \mathscr{A}(G), Q^- \in \mathscr{S}^-(\overline{G}), \psi_0 \in \mathscr{S}(G) \text{ and } d \in \mathbb{C} \backslash \{0\}.$ (vii) (3.15) ¹

$$
\Phi = C \left(\begin{array}{ccc} \frac{\mu + \mu \circ \sigma}{2} & \frac{\lambda_1}{\lambda} \left(\frac{\mu + \mu \circ \sigma}{2} a^+ + \frac{\mu - \mu \circ \sigma}{2} a^- \right) & * \\ 0 & \frac{\mu + \mu \circ \sigma}{2} & \frac{\lambda_2}{\lambda} \left(\frac{\mu + \mu \circ \sigma}{2} a^+ + \frac{\mu - \mu \circ \sigma}{2} a^- \right) \\ 0 & 0 & \frac{\mu + \mu \circ \sigma}{2} \end{array}\right) C^{-1},
$$

with $* = \frac{\mu + \mu \circ \sigma}{2} a_1^+ + \frac{\mu - \mu \circ \sigma}{2} a_1^- + \frac{1}{4} (\mu (a^+ + a^-)^2 + \mu \circ \sigma (a^+ - a^-)^2),$ and where $\left(\frac{\mu \pm \mu \circ \sigma}{2}\right)(p,q) = \frac{\mu_1(p)\mu_2(q)\pm \mu_1(q)\mu_2(p)}{2}, p,q \in G, a^+(p,q) = a_0(pq), a_1^+(p,q) =$ $b_1(pq)$, $a^-(p,q) = a_2(pq^{-1})$, $a_1^-(p,q) = a_3(pq^{-1})$, $p,q \in G$ and $\lambda^2 = \lambda_1 \lambda_2$ such that $\mu \in \mathcal{M}(\overline{G}) \setminus \{0\}$ with $\mu \neq \mu \circ \sigma$, $\mu_1, \mu_2 \in \mathcal{M}(G) \setminus \{0\}$ verifying $\mu_1 \neq \mu_2$, $a^+ \in \mathscr{A}^+(\overline{G})$, $a^- \in \mathscr{A}^-(\overline{G})$, $a_0, b_1, a_2, a_3 \in \mathscr{A}(G)$ and $\lambda_1, \lambda_2 \in \mathbb{C} \backslash \{0\}$. (viii)

$$
(3.16) \qquad \Phi=C\left(\begin{array}{ccc} \frac{\mu+\mu\circ\sigma}{2} & 0 & \frac{\mu+\mu\circ\sigma}{2}a_1^+ + \frac{\mu-\mu\circ\sigma}{2}a_1^-\\ 0 & \frac{\mu+\mu\circ\sigma}{2} & \frac{\mu+\mu\circ\sigma}{2}a_2^+ + \frac{\mu-\mu\circ\sigma}{2}a_2^-\\ 0 & 0 & \frac{\mu+\mu\circ\sigma}{2} \end{array}\right)C^{-1},
$$

where $\left(\frac{\mu \pm \mu \circ \sigma}{2}\right)(p,q) = \frac{\mu_1(p)\mu_2(q) \pm \mu_1(q)\mu_2(p)}{2}$, $p, q \in G$ such that $\mu \in \mathcal{M}(\overline{G}) \setminus \{0\}$ with $\mu \neq \mu \circ \sigma$, $\mu_1, \mu_2 \in \mathcal{M}(G) \setminus \{0\}$ verifying $\mu_1 \neq \mu_2$ and where $a_1^+(p,q)$ $b_1(pq), a_2^+(p,q) = b_2(pq), a_1^-(p,q) = a_3(pq^{-1}), a_2^-(p,q) = a_4(pq^{-1}), p, q \in G$ such that $a_1^+, a_2^+ \in \mathscr{A}^+(\overline{G}), a_1^-, a_2^- \in \mathscr{A}^-(\overline{G}), b_1, b_2, a_3, a_4 \in \mathscr{A}(G)$.

(ix)
\n(3.17)
\n
$$
\Phi = C \begin{pmatrix}\n\frac{\mu + \mu \circ \sigma}{2} & \frac{\mu + \mu \circ \sigma}{2} a_{2}^{+} + \frac{\mu - \mu \circ \sigma}{2} a_{2}^{-} & \frac{\mu + \mu \circ \sigma}{2} a_{1}^{+} + \frac{\mu - \mu \circ \sigma}{2} a_{1}^{-} \\
0 & \frac{\mu + \mu \circ \sigma}{2} & 0 & 0 \\
0 & 0 & \frac{\mu + \mu \circ \sigma}{2}\n\end{pmatrix} C^{-1},
$$

where $\left(\frac{\mu \pm \mu \circ \sigma}{2}\right)(p,q) = \frac{\mu_1(p)\mu_2(q) \pm \mu_1(q)\mu_2(p)}{2}$, $p, q \in G$ such that $\mu \in \mathcal{M}(\overline{G}) \setminus \{0\}$ with $\mu \neq \mu \circ \sigma$, $\mu_1, \mu_2 \in \mathcal{M}(G) \setminus \{0\}$ verifying $\mu_1 \neq \mu_2$ and where $a_1^+(p,q) =$ $b_1(pq), a_2^+(p,q) = b_2(pq), a_1^-(p,q) = a_3(pq^{-1}), a_2^-(p,q) = a_4(pq^{-1}), p, q \in G$ such that $a_1^+, a_2^+ \in \mathscr{A}^+(\overline{G}), a_1^-, a_2^- \in \mathscr{A}^-(\overline{G}), b_1, b_2, a_3, a_4 \in \mathscr{A}(G)$. Con-versely, the formulas of (i),(ii),...,(viii) and (ix) define solutions of [\(1.3\)](#page-1-0) satisfying $\Phi(e,e) = I_3$.

Proof. It is laborious, but elementary to check that all of the possibilities listed in Theorem [3.2](#page-7-0) define solutions of [\(1.3\)](#page-1-0) satisfying $\Phi(e, e) = I_3$, so it is left to show that each solution has one of the listed forms.

Since the matrices $\Phi(x)$, $x \in \overline{G}$ commute with one other (Lemma [2.1\)](#page-2-0), Lemma 1 of [\[13\]](#page-16-9) shows that there exists $C \in GL(3, \mathbb{C})$ such that

(3.18)
$$
\Phi(x) = C \begin{pmatrix} \phi_1(x) & \lambda_1 \phi(x) & \phi_0(x) \\ 0 & \phi_2(x) & \lambda_2 \phi(x) \\ 0 & 0 & \phi_3(x) \end{pmatrix} C^{-1}, x \in \overline{G}
$$

where $\lambda_1, \lambda_2 \in \mathbb{C}$. Since Φ is a solution of (2.1) with $\Phi(e, e) = I_3$, Proposi-tion [3.1](#page-5-3) shows that ϕ , ϕ_1 , ϕ_2 , ϕ_3 and ϕ_0 are abelian scalar functions on \overline{G} . Furthermore, they satisfy the following functional equations

(3.19)
$$
\phi_i(xy) + \phi_i(\sigma(y)x) = 2\phi_i(y)\phi_i(x), \text{ for } i = 1, 2, 3,
$$

(3.20)
$$
\lambda_1 \phi(xy) + \lambda_1 \phi(\sigma(y)x) = 2\lambda_1 \phi_1(y)\phi(x) + 2\lambda_1 \phi(y)\phi_2(x),
$$

$$
(3.21) \quad \phi_0(xy) + \phi_0(\sigma(y)x) = 2\phi_1(y)\phi_0(x) + 2\lambda_1\lambda_2\phi(y)\phi(x) + 2\phi_0(y)\phi_3(x),
$$

(3.22)
$$
\lambda_2 \phi(xy) + \lambda_2 \phi(\sigma(y)x) = 2\lambda_2 \phi_2(y)\phi(x) + 2\lambda_2 \phi(y)\phi_3(x),
$$

for all $x, y \in \overline{G}$. To show that the solutions are expressed in terms of multiplicative, additive and quadratic scalar functions on G we can refer to [\[16\]](#page-17-0) and [\[7\]](#page-16-12). The rest of the proof can be found in [\[2\]](#page-16-10). \Box

Proposition 3.3. Let $\Phi : \overline{G} \longrightarrow \mathcal{M}_3(\mathbb{C})$ be a solution of the matrix functional equation [\(1.3\)](#page-1-0).

(1) If $\Phi(e, e)$ is a 1-dimensional projection then there exist $\mu, \mu_1, \mu_2 \in \mathcal{M}(G) \setminus$ $\{0\}$ with $\mu_1 \neq \mu_2$, $a_1, a_2 \in \mathcal{A}(G)$, $c, c' \in \mathbb{C}$ and $C \in GL(3, \mathbb{C})$ such that (3.23)

$$
\Phi(p,q)=C\begin{bmatrix}\frac{\mu_1(p)\mu_2(q)+\mu_2(p)\mu_1(q)}{2} & c\frac{\mu_1(p)\mu_2(q)-\mu_2(p)\mu_1(q)}{2} & c'\frac{\mu_1(p)\mu_2(q)-\mu_2(p)\mu_1(q)}{2} \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{bmatrix}C^{-1},
$$

for all $p, q \in G$, or

(3.24)
$$
\Phi(p,q) = C\mu(pq) \begin{pmatrix} 1 & a_1(pq^{-1}) & a_2(pq^{-1}) \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} C^{-1} p, q \in G.
$$

(2) If $\Phi(e, e)$ is a 2-dimensional projection then there exists $C_1 \in GL(3, \mathbb{C})$ such that

(3.25)
$$
\Phi = C_1 \begin{pmatrix} \phi_{11} & \phi_{12} & \phi_{13} \\ \phi_{21} & \phi_{22} & \phi_{23} \\ 0 & 0 & 0 \end{pmatrix} C_1^{-1},
$$

in which the block matrices

$$
\left(\begin{array}{c}\n\phi_{13} \\
\phi_{23}\n\end{array}\right) \text{ and } \left(\begin{array}{cc}\n\phi_{11} & \phi_{12} \\
\phi_{21} & \phi_{22}\n\end{array}\right)
$$

are given by

$$
(3.26)\quad \left(\begin{array}{c}\n\phi_{13} \\
\phi_{23}\n\end{array}\right) = C(\mathcal{U}\alpha + \mathcal{U}\circ\sigma\beta) \text{ and } \left(\begin{array}{cc}\n\phi_{11} & \phi_{12} \\
\phi_{21} & \phi_{22}\n\end{array}\right) = C\frac{\mathcal{U} + \mathcal{U}\circ\sigma}{2}C^{-1},
$$

where $\alpha, \beta \in \mathbb{C}^2$ and $\mathcal{U}: \overline{G} \longrightarrow \mathcal{M}_2(\mathbb{C})$ has one of the following 6 forms:

$$
\mathcal{U}_1(p,q) = \begin{pmatrix} \mu_1(p)\mu_2(q) & 0 \\ 0 & \gamma_1(p)\gamma_2(q) \end{pmatrix} \quad p, q \in G,
$$

$$
\mathcal{U}_2(p,q) = \begin{pmatrix} \mu_1(p)\mu_2(q) & 0 \\ 0 & \gamma(pq)(1 + a(pq^{-1})) \end{pmatrix} \quad p, q \in G,
$$

$$
\mathcal{U}_3(p,q) = \begin{pmatrix} \mu(pq)(1 + a_1(pq^{-1})) & 0 \\ 0 & \gamma(pq)(1 + a_2(pq^{-1})) \end{pmatrix} \quad p, q \in G,
$$

$$
\mathcal{U}_4(p,q) = \mu_1(p)\mu_2(q)\begin{pmatrix} 1 & a_1(p) + a_2(q) \\ 0 & 1 \end{pmatrix} \quad p, q \in G,
$$

$$
\mathcal{U}_5(p,q) = \mu(pq)\begin{pmatrix} 1 & a_1(p) + a_2(q) + \psi(pq^{-1}) \\ 0 & 1 \end{pmatrix} \quad p, q \in G,
$$

$$
\mathcal{U}_6(p,q) = \mu(pq)\begin{pmatrix} 1 + a(pq^{-1}) & * \\ 0 & 1 + a(pq^{-1}) \end{pmatrix} \quad p, q \in G,
$$

with $* = c(a(pq^{-1}))^3 + 3c(a(pq^{-1}))^2 + a(pq) + a(pq)a(pq^{-1}) + a_1(pq^{-1})$, in which $C \in GL(2,\mathbb{C}), \mu, \gamma, \mu_1, \mu_2, \gamma_1, \gamma_2, \in \mathscr{M}(G) \setminus \{0\}, \ a, a_1, a_2 \in \mathscr{A}(G), \ \psi \in \mathscr{S}(G)$ and $c \in \mathbb{C}$.

Proof. We use similar computations to those used in the proof of Proposition [3.2.](#page-6-0) The equation [\(1.3\)](#page-1-0) can be reformulated as follows:

(3.27)
$$
\Phi(xy) + \Phi(\sigma(y)x) = 2\Phi(y)\Phi(x) \quad x, y \in \overline{G}.
$$

Writing

(3.28)
$$
\Phi = \begin{pmatrix} \phi_{11} & \phi_{12} & \phi_{13} \\ \phi_{21} & \phi_{22} & \phi_{23} \\ \phi_{31} & \phi_{32} & \phi_{33} \end{pmatrix}.
$$

Up to a similarity if $\Phi(e)$ is a projection then it can be taken as the orthogonal projection on the first canonical basis vector of \mathbb{C}^3 , so that

(3.29)
$$
\Phi(\mathbf{e}) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}
$$

in the case of 1-dimensional projection and

(3.30)
$$
\Phi(\mathbf{e}) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}
$$

in the case of 2-dimensional projection. Taking $y = e$ in [\(3.27\)](#page-11-0) we find that $\Phi(x) = \Phi(e)\Phi(x)$ for all $x \in \overline{G}$ then, if $\Phi(e)$ has the form [\(3.29\)](#page-11-1) we get $\phi_{21} = \phi_{22} = \phi_{23} = \phi_{31} = \phi_{32} = \phi_{33} = 0$ and $\phi_{11}, \phi_{12}, \phi_{13}$ are solutions of the scalar d'Alembert's and Wilson's functional equations respectively:

(3.31)
$$
\phi_{11}(xy) + \phi_{11}(\sigma(y)x) = 2\phi_{11}(y)\phi_{11}(x) \quad x, y \in \overline{G},
$$

(3.32)
$$
\phi_{12}(xy) + \phi_{12}(\sigma(y)x) = 2\phi_{11}(y)\phi_{12}(x) \quad x, y \in \overline{G},
$$

(3.33)
$$
\phi_{13}(xy) + \phi_{13}(\sigma(y)x) = 2\phi_{11}(y)\phi_{13}(x) \quad x, y \in \overline{G},
$$

such that $\phi_{11}(\mathbf{e}) = 1$ and $\phi_{12}(\mathbf{e}) = \phi_{13}(\mathbf{e}) = 0$. Finally the formulas of [\[14\]](#page-16-13) imply the first statement.

If $\Phi(e)$ has the form [\(3.30\)](#page-11-2) then $\phi_{31} = \phi_{32} = \phi_{33} = 0$ and

$$
\varphi_2 := \left(\begin{array}{c} \phi_{13} \\ \phi_{23} \end{array}\right) \text{ and } \Phi_2 := \left(\begin{array}{cc} \phi_{11} & \phi_{12} \\ \phi_{21} & \phi_{22} \end{array}\right)
$$

verify the 2-dimensional variants of d'Alembert's and Wilson's functional equations respectively:

(3.34)
$$
\begin{cases} \Phi_2(xy) + \Phi_2(\sigma(y)x) = 2\Phi_2(y)\Phi_2(x) & x, y \in \overline{G}, \\ \Phi_2(\mathbf{e}) = I_2. \end{cases}
$$

and

(3.35)
$$
\varphi_2(xy) + \varphi_2(\sigma(y)x) = 2\Phi_2(y)\varphi_2(x) \quad x, y \in G.
$$

It is obvious that Φ_2 is abelian (In fact its matrix elements are some of the matrix elements of Φ), then using [\[14,](#page-16-13) Theorem 3.3] allows us to conclude that

(3.36)
$$
\varphi_2 = C(\mathcal{U}\alpha + \mathcal{U}\circ\sigma\beta) \text{ and } \Phi_2 = C\frac{\mathcal{U} + \mathcal{U}\circ\sigma}{2}C^{-1},
$$

such that $\alpha, \beta \in \mathbb{C}^2$ and $\mathcal{U} : \overline{G} \longrightarrow \mathcal{M}_2(\mathbb{C})$ has one of the 6 forms cited in the second statement of the proposition. \Box

4. Vector-matrix variant of Wilson's functional equation

The present section is dedicated to show that the solutions of the functional equation [\(1.4\)](#page-1-1) are abelian if the unknown function f is belonging to \mathcal{F}_n , and furthermore that Φ is a solution of the n-dimensional version of the variant of d'Alembert's functional equation [\(1.3\)](#page-1-0). A set of main results are established for that goal, which is essentially Theorem [4.1.](#page-14-0)

All results of this section (Lemmata [4.1,](#page-12-0) [4.2](#page-12-1) and [4.3](#page-13-0) and Theorem [4.1\)](#page-14-0) contain the hypothesis that Φ is symmetric, that is $\Phi = \Phi \circ \sigma$.

Lemma 4.1. Let the pair $f : \overline{M} \longrightarrow \mathbb{C}^n$, $\Phi : \overline{M} \longrightarrow \mathcal{M}_n(\mathbb{C})$ be a solution of [\(1.4\)](#page-1-1). Then [\(2.4\)](#page-3-2) holds and f is central.

Proof. By replacing (p, q) by (e, e) in equation [\(1.4\)](#page-1-1) we get

$$
\Phi(r,s)f(e,e) = \frac{f(r,s) + f(s,r)}{2} \text{ for all } r, s \in M.
$$

By using that Φ is symmetric and by a simple computation we get

(4.1)
$$
[\Phi(pr,qs) + \Phi(sp,rq)]f(e,e) = 2\Phi(r,s)\Phi(p,q)f(e,e) \quad p,q,r,s \in M.
$$

By similar computations to those of proofs of Lemma [2.1](#page-2-0) and Proposition [3.1,](#page-5-3) it follows

$$
\Phi(p,q)\Phi(r,s)f(e,e) = \Phi(r,s)\Phi(p,q)f(e,e)
$$
 for all $(p,q),(r,s) \in \overline{M}$,

and

$$
\Phi((p,q)(r,s))f(e,e) = \Phi((r,s)(p,q))f(e,e) \text{ for all } (p,q),(r,s) \in \overline{M}.
$$

This can be written as follows

$$
\begin{cases}\n\Phi(x)\Phi(y)f(\mathbf{e}) = \Phi(y)\Phi(x)f(\mathbf{e}),\\ \Phi(xy)f(\mathbf{e}) = \Phi(yx)f(\mathbf{e}) \text{ for all } x, y \in \overline{M}.\n\end{cases}
$$

Since [\(2.4\)](#page-3-2) holds, Proposition [2.1](#page-3-1) shows that f is central. \Box

Lemma 4.2. Let the pair $f : \overline{M} \longrightarrow \mathbb{C}^n$, $\Phi : \overline{M} \longrightarrow \mathcal{M}_n(\mathbb{C})$ be a solution of [\(1.4\)](#page-1-1) such that $f \in \mathcal{F}_n$. Then

(4.2)
$$
\Phi(w,e)\Phi(q,e) = \Phi(q,e)\Phi(w,e) \text{ for all } q,w \in M.
$$

Proof. First, we can easily show that f^e is also a solution of [\(1.4\)](#page-1-1) since Φ is symmetric. Then we have a right to use the identity [\(2.8\)](#page-4-0), so

$$
f^{e}(xyz) = \Phi(z)f^{e}(xy) + \Phi(y)f^{e}(xz) + \Phi(yz)f^{e}(x) - 2\Phi(y)\Phi(z)f^{e}(x)
$$

for all $x, y, z \in \overline{M}$. Using this for $x = (p, u); y = (q, e); z = (e, w)$ yields

$$
f^{e}(pq, uw) = \Phi(e, w) f^{e}(pq, u) + \Phi(q, e) f^{e}(p, uw) + \Phi(q, w) f^{e}(p, u)
$$

$$
- 2\Phi(q, e)\Phi(e, w) f^{e}(p, u).
$$

Switching p with u and q with w and taking into consideration that Φ and f^e are both symmetric lead to

$$
\Phi(w,e)\Phi(q,e)f^e(u,p) = \Phi(q,e)\Phi(w,e)f^e(u,p),
$$

that is

(4.3)
$$
\Phi(w,e)\Phi(q,e)f^e = \Phi(q,e)\Phi(w,e)f^e \text{ for all } q,w \in M.
$$

On the other hand f° is also a solution of [\(1.4\)](#page-1-1), so by using [\(2.8\)](#page-4-0), we can write

(4.4)
$$
f^{o}(xyz) = \Phi(z)f^{o}(xy) + \Phi(y)f^{o}(xz) + \Phi(yz)f^{o}(x) - 2\Phi(y)\Phi(z)f^{o}(x)
$$

for all $x, y, z \in \overline{M}$. Taking into account that $f^o(\mathbf{e}) = 0$ the last identity with $x = e$ implies

(4.5)
$$
f^{o}(yz) = \Phi(z)f^{o}(y) + \Phi(y)f^{o}(z).
$$

So, we get

(4.6)
$$
f^o(xyz) = \Phi(yz)f^o(x) + \Phi(x)f^o(yz) \text{ for all } x, y, z \in \overline{M}.
$$

Then (4.4) and (4.6) yield

$$
2\Phi(y)\Phi(z)f^o(x) = \Phi(z)f^o(xy) + \Phi(y)f^o(xz) - \Phi(x)f^o(yz).
$$

By switching y with z and taking heed of the fact that f^o is central (identity (4.5) we deduce

$$
\Phi(y)\Phi(z)f^o(x) = \Phi(z)\Phi(y)f^o(x)
$$
 for all $x, y, z \in \overline{M}$.

Particularly, for $y = (w, e); z = (q, e)$ we have

(4.7)
$$
\Phi(w,e)\Phi(q,e)f^o = \Phi(q,e)\Phi(w,e)f^o \text{ for all } q,w \in M.
$$

Since $f = f^o + f^e$, adding [\(4.3\)](#page-13-4) to [\(4.7\)](#page-13-5) leads to the desired result.

Lemma 4.3. Let the pair $f : \overline{M} \longrightarrow \mathbb{C}^n$, $\Phi : \overline{M} \longrightarrow \mathcal{M}_n(\mathbb{C})$ be a solution of [\(1.4\)](#page-1-1). If $f \in \mathcal{F}_n$ then

- (i) The map $g := \Phi(\cdot, e)$ is central.
- (ii) The maps $f_1 := f(\cdot, e)$ and $f_2 := f(e, \cdot)$ satisfy the Kannappan condition : $f_1(pqr) = f_1(prq)$ and $f_2(pqr) = f_2(prq)$ for all $p, q, r \in M$.

Proof. Since the pair $f : \overline{M} \longrightarrow \mathbb{C}^n$, $\Phi : \overline{M} \longrightarrow \mathcal{M}_n(\mathbb{C})$ is a solution of [\(1.4\)](#page-1-1), Lemma [4.1](#page-12-0) ensures that [\(2.4\)](#page-3-2) holds, then according to Proposition [2.1,](#page-3-1) Φ is a solution of the functional equation

$$
\Phi(pr,qs) + \Phi(ps,qr) = 2\Phi(r,s)\Phi(p,q) \text{ for all } p,q,r,s \in M.
$$

Then for $q = s = e$ we have

$$
\Phi(pr,e) = 2\Phi(r,e)\Phi(p,e) - \Phi(p,r)
$$
 for all $p, r \in M$.

So

$$
g(pr) = 2g(r)g(p) - \Phi(p, r)
$$
 for all $p, r \in M$.

Since $g(r)$ and $g(p)$ commute (Lemma [4.2\)](#page-12-1) and $\Phi(p,r) = \Phi(r,p)$ for all $p, r \in$ M, g is central. This proves (i).

By setting $x = (p, e); y = (r, e)$ and $z = (s, e)$ in the identity [\(2.8\)](#page-4-0) we deduce

$$
f(prs,e) = \Phi(s,e)f(pr,e) + \Phi(r,e)f(ps,e) + \Phi(rs,e)f(p,e) - 2\Phi(r,e)\Phi(s,e)f(p,e).
$$

That is

$$
f_1(prs) = g(s)f_1(pr) + g(r)f_1(ps) + g(rs)f_1(p) - 2g(r)g(s)f_1(p).
$$

Since $g(r)$ and $g(s)$ commute and g is central, the map f_1 satisfies the Kannappan condition. Also we prove by similar computations that f_2 satisfies the same condition. This completes the proof.

Theorem 4.1. Let the pair $f : \overline{M} \longrightarrow \mathbb{C}^n$, $\Phi : \overline{M} \longrightarrow \mathcal{M}_n(\mathbb{C})$ be a solution of [\(1.4\)](#page-1-1) such that $f \in \mathcal{F}_n$. Then

- (1) Φ is an abelian solution of the functional equation [\(1.3\)](#page-1-0) such that $\Phi(e,e)=I_n.$
- (2) f is abelian.

Proof. Let the pair $f : \overline{M} \longrightarrow \mathbb{C}^n$, $\Phi : \overline{M} \longrightarrow \mathcal{M}_n(\mathbb{C})$ be a solution of [\(1.4\)](#page-1-1). Using the same arguments as in the proof of Lemma [4.3](#page-13-0) (i) we have

(4.8)
$$
\Phi(pr,qs) + \Phi(ps,qr) = 2\Phi(r,s)\Phi(p,q) \text{ for all } p,q,r,s \in M.
$$

To prove the first statement we just have to check that Φ is a central map. Let us first show that $g := \Phi(\cdot, e) = \Phi(e, \cdot)$ is an abelian function from M into $\mathcal{M}_n(\mathbb{C})$. Setting $s = e$ and $r = abc$ for some $a, b, c \in M$ and taking into account that f is central (Lemma [4.1\)](#page-12-0), the equation (1.4) shows that

(4.9) $f(pabc, q) + f(p, qabc) = 2\Phi(abc, e)f(p, q)$ for all $p, q, a, b, c \in M$,

which we write

(4.10)
$$
f((pabc, e)(e, q)) + f((e, qabc)(p, e)) = 2\Phi(abc, e)f(p, q).
$$

Using [\(2.3\)](#page-3-0) to expand the left-hand side of [\(4.10\)](#page-14-1) with $x = (pabc, e), y = (e, q)$ for the first term and with $x = (e, qabc), y = (p, e)$ for the second, we get

$$
2\Phi(abc, e)f(p, q) = 2\Phi(e, q)f(pabc, e) - f(qpabc, e)
$$

$$
+ 2\Phi(p,e)f(e,qabc) - f(e,pqabc).
$$

Switching b and c then using Lemma [4.3](#page-13-0) allow us to obtain the following

$$
2\Phi(acb,e)f(p,q) = 2\Phi(abc,e)f(p,q)
$$
 for all $p,q,a,b,c \in M$.

Since $f \in \mathcal{F}_n$, we conclude that $g := \Phi(\cdot, e)$ satisfies the Kannappan condition. Then it is an abelian function. As a result of [\(4.8\)](#page-14-2) we have

$$
\Phi((p,r)(q,s)) = \Phi(pq,rs) = \Phi((pq,e)(e,rs)) = 2\Phi(e,rs)\Phi(pq,e) - \Phi(pqrs,e)
$$

for all $p, q, r, s \in M$. Then

(4.11)
$$
\Phi((p,r)(q,s)) = 2g(rs)g(pq) - g(pqrs) \text{ for all } p,q,r,s \in M,
$$

and

(4.12)
$$
\Phi((q,s)(p,r)) = 2g(sr)g(qp) - g(qpsr) \text{ for all } p,q,r,s \in M.
$$

Since g is abelian, we conclude from [\(4.11\)](#page-15-0) and [\(4.12\)](#page-15-1) that Φ is central. More-over Proposition [3.1](#page-7-1) shows that Φ is abelian. This proves (1).

Taking into consideration the centrality of Φ and f and the fact that the matrices $\Phi(y)$ and $\Phi(z)$ commute (This follows from Lemma [4.1](#page-12-0) in combination with Proposition [2.1](#page-3-1) (4)), the identity (2.8) shows that f is abelian. This proves (2) and completes the proof. \Box

Note 1. Let (f, Φ) satisfies [\(1.4\)](#page-1-1) such that $f \notin \mathcal{F}_n$ then f remains abelian. To show this we first need to recall that equation [\(1.4\)](#page-1-1) can be reformulated as

(4.13)
$$
\begin{cases} f(xy) + f(\sigma(y)x) = 2\Phi(y)f(x) & x, y \in \overline{M}, \\ \Phi(x) = \Phi \circ \sigma(x) & x \in \overline{M}. \end{cases}
$$

If $n = 1$ then $f \notin \mathcal{F}_n$ means that $f = 0$, so f is clearly abelian. If $n > 1$ the sub-case dim $\langle \{f(x) \in \mathbb{C}^n | x \in \overline{M}\}\rangle = 0$ means that $f = 0$, then f is abelian.

From now we may assume that $\dim \langle \{f(x) \in \mathbb{C}^n | x \in \overline{M}\}\rangle = k$ for some $k \in \mathbb{N}^*$ strictly less than n, that is

$$
U := span{f(x) \in \mathbb{C}^n | x \in \overline{M}} = span{u_i \in \mathbb{C}^n | i = 1, ..., k}
$$

for some linearly independent vectors $(u_i)_{i \in \{1,\ldots,k\}} \in \mathbb{C}^n$. Then there exists a set of scalar functions on \overline{M} : $(f_i)_{i\in\{1,\ldots,k\}}$ such that

(4.14)
$$
f(x) = \sum_{i=1}^{k} f_i(x)u_i \quad x \in \overline{M}.
$$

Using [\(2.5\)](#page-3-4) ensures the existence of a set of scalar functions on \overline{M} : $\phi_{ij}, i, j \in$ $\{1, \ldots, k\}$ such that

(4.15)
$$
\Phi(x)u_j = \sum_{i=1}^k \phi_{ij}(x)u_i \quad x \in \overline{M},
$$

for $j \in \{1, \ldots, k\}$. Substituting f and Φ in [\(4.13\)](#page-15-2) shows that $\varphi_k := \left[f_1, \ldots, f_k\right]^T$ and $\Phi_k := (\phi_{ij})_{i,j\in\{1,\ldots,k\}}$ satisfy:

$$
\varphi_k(xy) + \varphi_k(\sigma(y)x) = 2\Phi_k(y)\varphi_k(x), \quad x, y \in \overline{M}.
$$

Since $(u_i)_{i\in\{1,\ldots,k\}}$ are linearly independent, the components of φ_k are linearly independent, that is, $\varphi_k \in \mathcal{F}_k$. Then Theorem [4.1](#page-14-0) shows that φ_k is abelian. Consequently, we deduce from (4.14) that f is abelian.

Note 2. If $n > 1$ and $\dim \langle \{f(x) \in \mathbb{C}^n | x \in \overline{M} \} \rangle = k$ for some $k \in \mathbb{N}^*$ strictly less than *n* then it is immediate to see from the formula [\(4.15\)](#page-15-4) (because Φ_k is abelian by Theorem [4.1\)](#page-14-0), that the operator valued function $x \mapsto \Phi(x)|_U$ from M to $\mathcal{L}(U)$ is abelian.

References

- [1] J. A. Baker and K. R. Davidson, *Cosine, exponential and quadratic functions*, Glas. Mat. Ser. III **16(36)** (1981), no. 2, 269-274.
- [2] B. Bouikhalene, E. Elqorachi and Y. Manar, Wilson's functional equations for vector and 3×3 matrix valued functions, Inequality Theory and Applications, Novapublishers, 6, 2010.
- [3] A. Chahbi and E. Elqorachi, A variant of d'Alembert's and Wilson's functional equations for 2×2 matrix valued functions, J. Math. Anal. Appl. 501 (2021), no. 2, Paper No. 125186, 18 pp. <https://doi.org/10.1016/j.jmaa.2021.125186>
- [4] W. Chojnacki, Fonctions cosinus hilbertiennes bornées dans les groupes commutatifs localement compacts, Compos. Mat. 57 (1986), no. 1, 15–60. [http://www.numdam.org/](http://www.numdam.org/item?id=CM_1986__57_1_15_0) [item?id=CM_1986__57_1_15_0](http://www.numdam.org/item?id=CM_1986__57_1_15_0)
- [5] W. Chojnacki, Group representations of bounded cosine functions, J. Reine Angew. Math. 478 (1996), 61–84. <https://doi.org/10.1515/crll.1996.478.61>
- [6] J. K. Chung, P. Kannappan, C. T. Ng, and P. K. Sahoo, Measures of distance between probability distributions, J. Math. Anal. Appl. 138 (1989), no. 1, 280–292. [https://doi.](https://doi.org/10.1016/0022-247X(89)90335-1) [org/10.1016/0022-247X\(89\)90335-1](https://doi.org/10.1016/0022-247X(89)90335-1)
- [7] H. H. Elfen, T. Riedel, and P. K. Sahoo, A variant of the quadratic functional equation on groups and an application, Bull. Korean Math. Soc. 54 (2017), no. 6, 2165–2182. <https://doi.org/10.4134/BKMS.b160824>
- [8] H. O. Fattorini, Uniformly bounded cosine functions in Hilbert space, Indiana Univ. Math. J. 20 (1970/71), 411–425. <https://doi.org/10.1512/iumj.1970.20.20035>
- [9] J. Kisyński, On operator-valued solutions of d'Alembert's functional equation. I, Colloq. Math. 23 (1971), 107–114. <https://doi.org/10.4064/cm-23-1-107-114>
- [10] J. Kisyński, On operator-valued solutions of d'Alembert's functional equation. II, Studia Math. 42 (1972), 43–66. <https://doi.org/10.4064/sm-42-1-43-66>
- [11] S. Kurepa, A cosine functional equation in Banach algebras, Acta Sci. Math. (Szeged) 23 (1962), 255–267.
- [12] P. Sinopoulos, *Wilson's functional equation for vector and matrix functions*, Proc. Amer. Math. Soc. 125 (1997), no. 4, 1089–1094. [https://doi.org/10.1090/S0002-9939-97-](https://doi.org/10.1090/S0002-9939-97-03685-X) [03685-X](https://doi.org/10.1090/S0002-9939-97-03685-X)
- [13] P. Sinopoulos, Wilson's functional equation in dimension 3, Aequationes Math. 66 (2003), no. 1-2, 164–179. <https://doi.org/10.1007/s00010-003-2680-z>
- [14] H. Stetkær, Functional equations on abelian groups with involution, Aequationes Math. 54 (1997), 144–172. <https://doi.org/10.1007/BF02755452>
- [15] H. Stetkær, *D'Alembert's and Wilson's functional equations for vector and* 2×2 matrix valued functions, Math. Scand. 87 (2000), no. 1, 115–132. [https://doi.org/10.7146/](https://doi.org/10.7146/math.scand.a-14302) [math.scand.a-14302](https://doi.org/10.7146/math.scand.a-14302)
- [16] H. Stetkær, A variant of d'Alembert's functional equation, Aequationes Math. 89 (2015), no. 3, 657–662. <https://doi.org/10.1007/s00010-014-0253-y>
- [17] L. Székelyhidi, Functional equations on abelian groups, Acta Math. Acad. Sci. Hungar. 37 (1981), no. 1-3, 235–243. <https://doi.org/10.1007/BF01904885>

Abdellatif Chahbi Equipe d'Equations Fonctionnelles et Applications Department of Mathematics Faculty of Sciences Ibn Zohr University Agadir, Morocco Email address: abdellatifchahbi@gmail.com

Mohamed Chakiri Equipe d'Equations Fonctionnelles et Applications Department of Mathematics Faculty of Sciences Ibn Zohr University Agadir, Morocco Email address: medchakiri@hotmail.com

Elhoucien Elqorachi Equipe d'Equations Fonctionnelles et Applications Department of Mathematics Faculty of Sciences Ibn Zohr University Agadir, Morocco Email address: elqorachi@hotmail.com