• Title/Summary/Keyword: neuroprotective activity

Search Result 296, Processing Time 0.029 seconds

Neuroprotective Activity of Lonicerin Isolated from Lonicera japonica (금은화에서 분리한 Lonicerin의 신경세포보호 활성)

  • Lee, Hyunwoo;Ma, Choong Je
    • Korean Journal of Pharmacognosy
    • /
    • v.52 no.1
    • /
    • pp.19-25
    • /
    • 2021
  • We previously reported that lonicerin isolated from Lonicera japonica methanolic extract had potent neuro-protective activities in neuronal cell death injured by excessive glutamate. In this study, we tried to confirm the neuroprotective activities of L. japonica extract and lonicerin in glutamate injured HT22 cells and establish mechanisms of neuroprotective action of lonicerin. We used HT22 cell death injured by glutamate as a bioassay system. The compound decreased reactive oxygen species increased by excessive glutamate treatment in HT22 cells. Also, Ca2+ concentration was decreased by lonicerin treatment. This compound made mitochondrial membrane potential maintain to normal condition. Lonicerin also increased not only glutathione reductase but also peroxidase to the control level. And this compound increased amount of glutathione, an endogenous antioxidant. These results indicated that lonicerin isolated from L. japonica showed potent neuroprotective activity through the anti-oxidative pathway.

The Study on Compounds of the Fermented Sipjundaebo-tang and its Neuroprotective Activity (십전대보탕 발효물의 성분 분석 및 뇌신경 세포 보호 활성)

  • Yang, Hye-Jin;Weon, Jin-Bae;Ma, Jin-Yeul;Ma, Choong-Je
    • YAKHAK HOEJI
    • /
    • v.55 no.2
    • /
    • pp.121-126
    • /
    • 2011
  • Sipjundaebo-tang was a well-known restorative traditional herbal prescription that used to treat anemia, anorexia, fatigue and inflammation. In this study, we examined the bioconversion of compounds in the Sipjundaebo-tang (SJ) and fermented Sipjundaebo-tang with Lactobacillus fermentum KFRI 164 (FSJ) using established HPLC-DAD method. The chromatogram of FSJ has shown that the contents of six bioactive compounds 5-HMF, paeoniflorin, ferulic acid, cinnam aldehyde, decursin, glycyrrhizin in SJ has decreased. And the contents of unknown compounds (1), (2), (3), (4) and (5) in FSJ were higher than each contents of SJ. The antioxidant activities of SJ and FSJ were conducted by DPPH free radical and Hydrogen peroxide ($H_2O_2$) scavenging assay. Electron donating activity (EDA, %) value of FSJ has shown higher than 21.9% and 14.5% at a concentration of 0.5 mg/ml for DPPH radical scavenging activity and $H_2O_2$ scavenging activity, respectively. Also, the neuroprotective activities of SJ and FSJ against glutamate-induced oxidative stress in a mouse hippocampal cell line (HT22) were evaluated by MTT assay. As a result, FSJ has shown higher neuroprotective activity than 56.5% comparing with SJ. In conclusion, the fermented SJ using microorganism could convert compounds in SJ and enhance antioxidant activity and neuroprotective activity.

Thiolactomide: A New Homocysteine Thiolactone Derivative from Streptomyces sp. with Neuroprotective Activity

  • Jang, Jun-Pil;Kwon, Min Cheol;Nogawa, Toshihiko;Takahashi, Shunji;Osada, Hiroyuki;Ahn, Jong Seog;Ko, Sung-Kyun;Jang, Jae-Hyuk
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.12
    • /
    • pp.1667-1671
    • /
    • 2021
  • A new homocysteine thiolactone derivative, thiolactomide (1), was isolated along with a known compound, N-acetyl homocysteine thiolactone (2), from a culture extract of soil-derived Streptomyces sp. RK88-1441. The structures of these compounds were elucidated by detailed NMR and MS spectroscopic analyses with literature study. In addition, biological evaluation studies revealed that compounds 1 and 2 both exert neuroprotective activity against 6-hydroxydopamine (6-OHDA)-mediated neurotoxicity by blocking the generation of hydrogen peroxide in neuroblastoma SH-SY5Y cells.

Neuroprotective Effects of Heat-Killed Levilactobacillus brevis KU15152 on H2O2-Induced Oxidative Stress

  • Hyun-Ji Bock;Na-Kyoung Lee;Hyun-Dong Paik
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.9
    • /
    • pp.1189-1196
    • /
    • 2023
  • This study proposed to demonstrate the neuroprotective effects of heat-killed Levilactobacillus brevis KU15152. Heat-killed L. brevis KU15152 showed antioxidant activity similar to that of Lacticaseibacillus rhamnosus GG, in terms of radical scavenging activity. To evaluate the neuroprotective effects, conditioned medium (CM) obtained by incubating heat-killed bacteria in intestinal cells (HT-29) was used through gut-brain axis. CM from L. brevis KU15152 protected neuroblastoma cells (SH-SY5Y) against H2O2-induced oxidative stress. Pretreatment with CM significantly alleviated the morphological changes induced by H2O2. Heat-killed L. brevis KU15152 showed an increased brain-derived neurotrophic factor (BDNF) expression in HT-29 cells. L. brevis KU15152-CM remarkably downregulated the Bax/Bcl-2 ratio, while upregulating the expression of BDNF and tyrosine hydroxylase (TH) in SH-SY5Y cells. Furthermore, L. brevis KU15152-CM reduced caspase-3 activity following H2O2 treatment. In conclusion, L. brevis KU15152 can be potentially used as food materials to avoid neurodegenerative diseases.

Neuroprotective Effect according to Reactive Oxygen Species Scavenging Activity from Extracts of Cudrania tricuspidata Leaves (활성산소 소거활성에 따른 꾸지뽕잎 추출물의 신경세포 보호 효과)

  • Kang, Young-Kyoung;Lee, Eun-Ah;Park, Hae-Ryong
    • Korean journal of food and cookery science
    • /
    • v.28 no.6
    • /
    • pp.821-828
    • /
    • 2012
  • In an attempt to identify the neuroprotective effect of Cudrania tricuspidata (CT) leaves against ROS (reactive oxygen species)-induced oxidative stress in neuronal cells, the extracts from CT leaves were investigated using PC12 cells and N18-RE-105 cells. The methanolic and ethanolic extracts from CT were denoted as CTM (Cudrania tricuspidata Leaves methanolic extracts) and CTE (Cudrania tricuspidata Leaves ethanolic extracts), respectively. The neuroprotective effects of the extracts were measured by DCF-DA assay, MTT reduction assay, and LDH release assay. The PC12 cells exposed to $H_2O_2$-induced oxidative stress and the N18-RE-105 cells exposed to glutamate-induced oxidative stress were treated with various concentrations of CTM and CTE. The results, CTM treatments resulted in the induction of a dose-dependent protective effect in PC12 cells and N18-RE-105 cells. Interestingly, CTE also showed neuroprotective effect in PC12 cells and N18-RE-105 cells. Therefore, these results suggest that CTM and CTE could be a new potential candidate as neuroprotective agents against ROS-induced oxidative stress in neuronal cells.

Neuroprotective and anti-inflammatory activity of marine sponge extract and HPLC profiling of its components (해면 추출물의 신경세포 보호 및 항염증 활성과 함유 성분의 HPLC 프로파일링)

  • Kim, Da-Eun;Kim, Min-Seon;An, Hye Suck;Lee, Jae Wook;Park, Jin-Soo
    • Journal of Applied Biological Chemistry
    • /
    • v.64 no.1
    • /
    • pp.33-38
    • /
    • 2021
  • Marine sponges contain pharmacologically attractive substances that exhibit strong cytotoxicity and are used as materials to isolate potential drug candidates. However, with a growing interest in marine ecosystem conservation, it is becoming increasingly difficult to gather a sponge for natural product research. To build a database to cope with this issue, we measured the neuroprotective and anti-inflammatory activity of 181 sponge extracts. As a result, we found 17 samples with neuroprotective effects and 14 samples with anti-inflammatory effects. In addition, high-performance liquid chromatography (HPLC) analysis was performed to compare the components contained in each sample, and based on HPLC profiles, a dendrogram according to similarity was created. The results of this study suggested the possibility of discovering the active compounds in the sponge and laid the basis for efficient research on the sponge.

Neuroprotective Activities of Some Medicinal Plants against Glutamate-induced Neurotoxicity in Primary Cultures of Rat Cortical Cells

  • Won, Jin-Bae;Ma, Choong-Je
    • Natural Product Sciences
    • /
    • v.15 no.3
    • /
    • pp.125-129
    • /
    • 2009
  • Neurodegenerative diseases such as Alzheimer's disease, stroke, and Parkinson's disease, are caused by neuronal cell death. Apoptosis, oxidative stress, inflammation, excitotoxicity or ischemia are discussed to play a role of neuronal cell death. In order to find the candidate of neuroprotective agent, neuroprotective activity of some medicinal plants was investigated with in vitro assay system using glutamate-induced neurotoxicity in primary cultures of rat cortical cells. The aqueous methanolic extracts of twenty-seven medicinal plants were evaluated the protective effects against glutamate-injured excitotoxicity in rat cortical cells at the concentration of 50 $\mu$g/ml and 100 $\mu$g/ml, respectively. Among them, extracts of Lonicera japonica, Taraxacum platycarpum, Polygonum aviculare, Gardenia jasminoides, Forsythia viridissima, Lygodium japonicum, Panax notoginseng, Akebia quinata, Anemarrhena asphodeloides and Phellodendron amurense showed significantly neuroprotective activities against glutamate-induced neurotoxicity in primary rat cortical cells.

The Neuroprotective Mechanism of Sunghyangjunggisan Water Extracts on Apoptosis of PC 12 Cell (PC 12 세포의 Apoptosis에 대한 성향정기산의 방어효과 및 작용기전 연구)

  • 최철원;이인;이기상;조남수;문병순
    • The Journal of Korean Medicine
    • /
    • v.23 no.1
    • /
    • pp.50-60
    • /
    • 2002
  • Objectives: Sunghyangjunggisan (SHJS) is a commonly prescribed drug with a wide neuropharmacological spectrum. The water extracts of SHJS were found to be protective against neurotoxicity elicited by deprivation of serum and glucose. Methods: The morphological examination and Hoechst staining of nucleus also clearly showed that the extracts attenuated the cell shrinkage, membrane blebbing, representing typical neuronal apoptotic phenomena and nucleosome-sized fragmentation under the microscope in PC 12 rat pheochromocytoma cells. Results: Activation of protein kinase A (PKA) with dibutyl-cAMP and forskolin also protected during glucose deprivation, although it was not additive with the effect provided by phorbol ester. Interestingly, treatment with the protein kinase A inhibitor, KT5720, was not neuroprotective in the presence of SHJS. Electrophoretic mobility shift assays were used to characterize the neuroprotective binding of nuclear proteins to consensus sequences for AP-l, nuclear factor kappa B ($NF-{\kappa}B$) after glucose deprivation. When PC 12 cells are induced to undergo apoptosis by serum deprivation, AP-l and $NF-{\kappa}B$ DNA binding activity transiently increases to a slight degree. This stimulation is blocked by the water extracts of SHJS. The site of action of the drugs appeared to involve specific inhibition of AP-1 and nuclear factor kB binding activity. Conclusions: Taken together, these results suggested the possibility that the extracts of SHJS might provide a neurotrophic-like activity in PC 12 cells.

  • PDF

Neuroprotective Activity of Boesenbergia rotunda Against Glutamate Induced Oxidative Stress in HT22 Cells (글루타메이트에 의해 산화적 스트레스를 받은 HT22 세포에서 핑거루트의 신경세포 보호활성)

  • Kim, Eun Seo;Ma, Choong Je
    • Korean Journal of Pharmacognosy
    • /
    • v.53 no.2
    • /
    • pp.79-86
    • /
    • 2022
  • Excessive glutamate causes oxidative stress in neuronal cells, which can cause degenerative neurological disorders. We tried to find medicinal plant showed neuroprotective activity by using glutamate-injured HT22 cell as a model system. In this study, we found that Boesenbergia rotunda methanol extract showed neuroprotective activity against glutamate induced neurotoxicity in mouse hippocampal HT22 cells. B. rotunda methanol extract suppressed the formation of reactive oxygen species and decreased intracellular Ca2+concentration. Also, B. rotunda made mitochondrial membrane potential maintain to normal levels. In addition, B. rotunda increased total glutathione amount and activated antioxidative enzyme such as glutathione reductase and glutathione peroxidase compared to glutamate-treated groups. These results suggested that B. rotunda decreased neuronal cell death damaged by high concentrations of glutamate treatment, via antioxidative mechanism and might be one of candidate of development of new drug to treat neurodegenerative disease such as Alzheimer's disease.

Development of Non-Immunosuppressive FK506 Derivatives as Antifungal and Neurotrophic Agents

  • Jung, Jin A;Yoon, Yeo Joon
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.1
    • /
    • pp.1-10
    • /
    • 2020
  • FK506, also known as tacrolimus, is a clinically important immunosuppressant drug and has promising therapeutic potentials owing to its antifungal, neuroprotective, and neuroregenerative activities. To generate various FK506 derivatives, the structure of FK506 has been modified by chemical methods or biosynthetic pathway engineering. Herein, we describe the mode of the antifungal action of FK506 and the structure-activity relationship of FK506 derivatives in the context of immunosuppressive and antifungal activities. In addition, we discuss the neurotrophic mechanism of FK506 known to date, along with the neurotrophic FK506 derivatives with significantly reduced immunosuppressive activity. This review suggests the possibility to generate novel FK506 derivatives as antifungal as well as neuroregenerative/neuroprotective agents.