References
- Kino T, Hatanaka H, Miyata S, Inamura N, Nishiyama M, Yajima T, et al. 1987. FK-506, a novel immunosuppressant isolated from a Streptomyces. II. Immunosuppressive effect of FK-506 in vitro. J. Antibiot. 40: 1256-1265. https://doi.org/10.7164/antibiotics.40.1256
- Parsons WH, Sigal NH, Wyvratt MJ. 1993. FK-506--a novel immunosuppressant. Ann. NY Acad. Sci. 685: 22-36. https://doi.org/10.1111/j.1749-6632.1993.tb35847.x
- Kino T, Hatanaka H, Hashimoto M, Nishiyama M, Goto T, Okuhara M, et al. 1987. FK-506, a novel immunosuppressant isolated from a Streptomyces. I. Fermentation, isolation, and physico-chemical and biological characteristics. J. Antibiot. 40: 1249-1255. https://doi.org/10.7164/antibiotics.40.1249
- Ban YH, Park SR, Yoon YJ. 2016. The biosynthetic pathway of FK506 and its engineering: from past achievements to future prospects. J. Ind. Microbiol. Biotechnol. 43: 389-400. https://doi.org/10.1007/s10295-015-1677-7
- Barreiro C, Martinez-Castro M. 2014. Trends in the biosynthesis and production of the immunosuppressant tacrolimus (FK506). Appl. Microbiol. Biotechnol. 98: 497-507. https://doi.org/10.1007/s00253-013-5362-3
- Mo S, Lee SK, Jin YY, Suh JW. 2016. Improvement of FK506 production in the high-yielding strain Streptomyces sp. RM7011 by engineering the supply of allylmalonyl-CoA through a combination of genetic and chemical approach. J. Microbiol. Biotechnol. 26: 233-40. https://doi.org/10.4014/jmb.1506.06032
- Nakagawa H, Etoh T, Yokota Y, Ikeda F, Hatano K, Teratani N, et al. 1996. Tacrolimus has antifungal activities against Malassezia furfur isolated from healthy adults and patients with atopic dermatitis. Clin. Drug. Invest. 12: 244-250. https://doi.org/10.2165/00044011-199612050-00003
- Steinbach WJ, Reedy JL, Cramer RA Jr, Perfect JR, Heitman J. 2007. Harnessing calcineurin as a novel anti-infective agent against invasive fungal infections. Nat. Rev. Microbiol. 5: 418-430. https://doi.org/10.1038/nrmicro1680
- Sharkey J, Butcher SP. 1994. Immunophilins mediate the neuroprotective effects of FK506 in focal cerebral ischaemia. Nature 371: 336-339. https://doi.org/10.1038/371336a0
- Lyons WE, George EB, Dawson TM, Steiner JP, Snyder SH. 1994. Immunosuppressant FK506 promotes neurite outgrowth in cultures of PC12 cells and sensory ganglia. Proc. Natl. Acad. Sci. USA 91: 3191-3195. https://doi.org/10.1073/pnas.91.8.3191
- Dumont FJ, Staruch MJ, Koprak SL, Siekierka JJ, Lin CS, Harrison R, et al. 1992. The immunosuppressive and toxic effects of FK-506 are mechanistically related: pharmacology of a novel antagonist of FK-506 and rapamycin. J. Exp. Med. 176: 751-760. https://doi.org/10.1084/jem.176.3.751
- Liu J, Farmer JD Jr, Lane WS, Friedman J, Weissman I, Schreiber SL. 1991. Calcineurin is a common target of cyclophilin-cyclosporin A and FKBP-FK506 complexes. Cell 66: 807-815. https://doi.org/10.1016/0092-8674(91)90124-h
- Andexer JN, Kendrew SG, Nur-e-Alam M, Lazos O, Foster TA, Zimmermann AS, et al. 2011. Biosynthesis of the immunosuppressants FK506, FK520, and rapamycin involves a previously undescribed family of enzymes acting on chorismate. Proc. Natl. Acad. Sci. USA 108: 4776-4781. https://doi.org/10.1073/pnas.1015773108
- Mo S, Kim DH, Lee JH, Park JW, Basnet DB, Ban YH, et al. 2011. Biosynthesis of the allylmalonyl-CoA extender unit for the FK506 polyketide synthase proceeds through a dedicated polyketide synthase and facilitates the mutasynthesis of analogues. J. Am. Chem. Soc. 133: 976-985. https://doi.org/10.1021/ja108399b
- Motamedi H, Shafiee A. 1998. The biosynthetic gene cluster for the macrolactone ring of the immunosuppressant FK506. Eur. J. Biochem. 256: 528-534. https://doi.org/10.1046/j.1432-1327.1998.2560528.x
- Ban YH, Shinde PB, Hwang JY, Song MC, Kim DH, Lim SK, et al. 2013. Characterization of FK506 biosynthetic intermediates involved in post-PKS elaboration. J. Nat. Prod. 76: 1091-1098. https://doi.org/10.1021/np4001224
- Breuder T, Hemenway CS, Movva NR, Cardenas ME, Heitman J. 1994. Calcineurin is essential in cyclosporin Aand FK506-sensitive yeast strains. Proc. Natl. Acad. Sci. USA 91: 5372-5376. https://doi.org/10.1073/pnas.91.12.5372
- Watanabe Y, Perrino BA, Chang BH, Soderling TR. 1995. Identification in the calcineurin A subunit of the domain that binds the regulatory B subunit. J. Biol. Chem. 270: 456-460. https://doi.org/10.1074/jbc.270.1.456
- Withee JL, Mulholland J, Jeng R, Cyert MS. 1997. An Essential role of the yeast pheromone-induced Ca2+ signal is to activate calcineurin. Mol. Biol. Cell 8: 263-277. https://doi.org/10.1091/mbc.8.2.263
- Odom A, Muir S, Lim E, Toffaletti DL, Perfect J, Heitman J. 1997. Calcineurin is required for virulence of Cryptococcus neoformans. EMBO J. 16: 2576-2589. https://doi.org/10.1093/emboj/16.10.2576
- Mitchell TG, Perfect JR. 1995. Cryptococcosis in the era of AIDS-100 years after the discovery of Cryptococcus neoformans. Clin. Microbiol. Rev. 8: 515-548. https://doi.org/10.1128/cmr.8.4.515
- Berman J, Sudbery PE. 2002. Candida albicans: a molecular revolution built on lessons from budding yeast. Nat. Rev. Genet. 3: 918-930. https://doi.org/10.1038/nrg948
- Blankenship JR, Wormley FL, Boyce MK, Schell WA, Filler SG, Perfect JR, et al. 2003. Calcineurin is essential for Candida albicans survival in serum and virulence. Eukaryot. Cell 2: 422-430. https://doi.org/10.1128/EC.2.3.422-430.2003
- Steinbach WJ, Cramer RA Jr, Perfect BZ, Asfaw YG, Sauer TC, Najvar LK, et al. 2006. Calcineurin controls growth, morphology, and pathogenicity in Aspergillus fumigatus. Eukaryot. Cell 5: 1091-1103. https://doi.org/10.1128/EC.00139-06
- Fox DS, Cruz MC, Sia RA, Ke H, Cox GM, Cardenas ME, et al. 2001. Calcineurin regulatory subunit is essential for virulence and mediates interactions with FKBP12-FK506 in Cryptococcus neoformans. Mol. Microbiol. 39: 835-849. https://doi.org/10.1046/j.1365-2958.2001.02295.x
- da Silva Ferreira ME, Heinekamp T, Hartl A, Brakhage AA, Semighini CP, Harris SD, et al. 2007. Functional characterization of the Aspergillus fumigatus calcineurin. Fungal Genet. Biol. 44: 219-230. https://doi.org/10.1016/j.fgb.2006.08.004
- Bader T, Bodendorfer B, Schroppel K, Morschhauser J. 2003. Calcineurin is essential for virulence in Candida albicans. Infect. Immun. 71: 5344-5354. https://doi.org/10.1128/IAI.71.9.5344-5354.2003
- Blankenship JR, Heitman J. 2005. Calcineurin is required for Candida albicans to survive calcium stress in serum. Infect. Immun. 73: 5767-5774. https://doi.org/10.1128/IAI.73.9.5767-5774.2005
- Cruz MC, Goldstein AL, Blankenship JR, Del Poeta M, Davis D, Cardenas ME, et al. 2002. Calcineurin is essential for survival during membrane stress in Candida albicans. EMBO J. 21: 546-559. https://doi.org/10.1093/emboj/21.4.546
- High KP. 1994. The antimicrobial activities of cyclosporine, FK506, and rapamycin. Transplantation 57: 1689-1700. https://doi.org/10.1097/00007890-199406270-00001
- Steinbach WJ, Schell WA, Blankenship JR, Onyewu C, Heitman J, Perfect JR. 2004. In vitro interactions between antifungals and immunosuppressants against Aspergillus fumigatus. Antimicrob. Agents. Chemother. 48: 1664-1669. https://doi.org/10.1128/AAC.48.5.1664-1669.2004
- Griffith JP, Kim JL, Kim EE, Sintchak MD, Thomson JA, Fitzgibbon MJ, et al. 1995. X-ray structure of calcineurin inhibited by the immunophilin-immunosuppressant FKBP12-FK506 complex. Cell 82: 507-522. https://doi.org/10.1016/0092-8674(95)90439-5
- Juvvadi PR, Fox D 3rd, Bobay BG, Hoy MJ, Gobeil SMC, Venters RA, et al. 2019. Harnessing calcineurin-FK506-FKBP12 crystal structures from invasive fungal pathogens to develop antifungal agents. Nat. Commun. 10: 4275. https://doi.org/10.1038/s41467-019-12199-1
- Odom A, Del Poeta M, Perfect J, Heitman J. 1997. The immunosuppressant FK506 and its nonimmunosuppressive analog L-685,818 are toxic to Cryptococcus neoformans by inhibition of a common target protein. Antimicrob. Agents. Chemother. 41: 156-161. https://doi.org/10.1128/AAC.41.1.156
- Kontoyiannis DP, Lewis RE, Osherov N, Albert ND, May GS. 2003. Combination of caspofungin with inhibitors of the calcineurin pathway attenuates growth in vitro in Aspergillus species. J. Antimicrob. Chemother. 51: 313-316. https://doi.org/10.1093/jac/dkg090
- Shinde PB, Ban YH, Hwang JY, Cho Y, Chen YA, Cheong E, et al. 2015. A non-immunosuppressive FK506 analogue with neuroregenerative activity produced from a genetically engineered Streptomyces strain. RSC Adv. 5: 6823-6828. https://doi.org/10.1039/C4RA11907J
- Lee Y, Lee KT, Lee SJ, Beom JY, Hwangbo A, Jung JA, et al. 2018. In vitro and in vivo assessment of FK506 analogs as novel antifungal drug candidates. Antimicrob. Agents Chemother. 62: e01627-18.
- Beom JY, Jung JA, Lee KT, Hwangbo A, Song MC, Lee Y, et al. 2019. Biosynthesis of nonimmunosuppressive FK506 analogues with antifungal activity. J. Nat. Prod. 82: 2078-2086. https://doi.org/10.1021/acs.jnatprod.9b00144
- Cullen WP, Guadliana MA, Huang LH, Kaneda K, Kojima N, Kojima Y, et al. 1992. Novel immunosuppressant agent from Streptomyces braegensis. WO Patent 1992/018506.
- Baumann K, Knapp H, Strnadt G, Schulz G, Grassberger MA. 1999. Carbonyl to methylene conversions at the tricarbonyl-portion of ascomycin derivatives. Tetrahedron Lett. 40: 7761-7764. https://doi.org/10.1016/S0040-4039(99)01622-6
- Chen TS, Arison BH, Wicker LS, Inamine ES, Monaghan RL. 1992. Microbial transformation of immunosuppressive compounds. I. Desmethylation of FK506 and immunomycin (FR 900520) by Actinoplanes sp. ATCC 53771. J. Antibiot. 45: 118-123. https://doi.org/10.7164/antibiotics.45.118
- Brizuela L, Chrebet G, Bostian KA, Parent SA. 1991. Antifungal properties of the immunosuppressant FK-506: identification of an FK-506-responsive yeast gene distinct from FKB1. Mol. Cell. Biol. 11: 4616-4626. https://doi.org/10.1128/MCB.11.9.4616
- Gold BG, Storm-Dickerson T, Austin DR. 1994. The immunosuppressant FK506 increases functional recovery and nerve regeneration following peripheral nerve injury. Restor. Neurol. Neurosci. 6: 287-296.
- Steiner JP, Dawson TM, Fotuhi M, Glatt CE, Snowman AM, Cohen N, et al. 1992. High brain densities of the immunophilin FKBP colocalized with calcineurin. Nature 358: 584-587. https://doi.org/10.1038/358584a0
- Snyder SH, Sabatini DM. 1995. Immunophilins and the nervous system. Nat. Med. 1: 32-37. https://doi.org/10.1038/nm0195-32
- Choi DW. 1988. Glutamate neurotoxicity and diseases of the nervous system. Neuron 1: 623-634. https://doi.org/10.1016/0896-6273(88)90162-6
- Dawson VL, Dawson TM, Bartley DA, Uhl GR, Snyder SH. 1993. Mechanisms of nitric oxide-mediated neurotoxicity in primary brain cultures. J. Neurosci. 13: 2651-2661. https://doi.org/10.1523/jneurosci.13-06-02651.1993
- Conde M, Andrade J, Bedoya FJ, Santa Maria C, Sobrino F. 1995. Inhibitory effect of cyclosporin A and FK506 on nitric oxide production by cultured macrophages. Evidence of a direct effect on nitric oxide synthase activity. Immunology 84: 476-481.
- Dawson TM, Steiner JP, Dawson VL, Dinerman JL, Uhl GR, Snyder SH. 1993. Immunosuppressant FK506 enhances phosphorylation of nitric oxide synthase and protects against glutamate neurotoxicity. Proc. Natl. Acad. Sci. USA 90: 9808-9812. https://doi.org/10.1073/pnas.90.21.9808
- Butcher SP, Henshall DC, Teramura Y, Iwasaki K, Sharkey J. 1997. Neuroprotective actions of FK506 in experimental stroke: in vivo evidence against an antiexcitotoxic mechanism. J. Neurosci. 17: 6939-6946. https://doi.org/10.1523/jneurosci.17-18-06939.1997
- Gold BG, Densmore V, Shou W, M atzuk MM, G ordon HS. 1999. Immunophilin FK506-binding protein 52 (not FK506- binding protein 12) mediates the neurotrophic action of FK506. J. Pharmacol. Exp. Ther. 289: 1202-1210.
- Gold BG. 1999. FK506 and the role of the immunophilin FKBP-52 in nerve regeneration. Drug Metab. Rev. 31: 649-663. https://doi.org/10.1081/DMR-100101940
- Gold BG, Villafranca JE. 2003. Neuroimmunophilin Ligands: The development of novel neuroregenerative/neuroprotective compounds. Curr. Top. Med. Chem. 3: 1368-1375. https://doi.org/10.2174/1568026033451880
- Pratt WB, Toft DO. 1997. Steroid receptor interactions with heat shock protein and immunophilin chaperones. Endocr. Rev. 18: 306-360. https://doi.org/10.1210/edrv.18.3.0303
- Setalo G Jr, Singh M, Guan X, Toran-Allerand CD. 2002. Estradiol-induced phosphorylation of ERK1/2 in explants of the mouse cerebral cortex: the roles of heat shock protein 90 (Hsp90) and MEK2. J. Neurobiol. 50: 1-12. https://doi.org/10.1002/neu.10000
- Herdegen T, Skene P, Bahr M. 1997. The c-jun transcription factor -bipotential mediator of neuronal death, survival and regeneration. Trend Neurosci. 20: 227-231. https://doi.org/10.1016/S0166-2236(96)01000-4
- Hausch F. 2015. FKBPs and their role in neuronal signaling. Biochim. Biophys. Acta 1850: 2035-2040. https://doi.org/10.1016/j.bbagen.2015.01.012
- Schmidt MV, Paez-Pereda M, Holsboer F, Hausch F. 2012. The prospect of FKBP51 as a drug target. ChemMedChem 7: 1351-1359. https://doi.org/10.1002/cmdc.201200137
- Quinta HR, Maschi D, Gomez-Sanchez C, Piwien-Pilipuk G, Galigniana MD. 2010. Subcellular rearrangement of hsp90-binding immunophilins accompanies neuronal differentiation and neurite outgrowth. J. Neurochem. 115: 716-734. https://doi.org/10.1111/j.1471-4159.2010.06970.x
- Cheung-Flynn J, Prapapanich V, Cox MB, Riggs DL, Suarez-Quian C, Smith DF. 2005. Physiological role for the cochaperone FKBP52 in androgen receptor signaling. Mol. Endocrinol. 19: 1654-1666. https://doi.org/10.1210/me.2005-0071
- Yong W, Yang Z, Periyasamy S, Chen H, Yucel S, Li W, et al. 2007. Essential role for co-chaperone Fkbp52 but not Fkbp51 in androgen receptor-mediated signaling and physiology. J. Biol. Chem. 282: 5026-5036. https://doi.org/10.1074/jbc.M609360200
- Tranguch S, Cheung-Flynn J, Daikoku T, Prapapanich V, Cox MB, Xie H, et al. 2005. Cochaperone immunophilin FKBP52 is critical to uterine receptivity for embryo implantation. Proc. Natl. Acad. Sci. USA 102: 14326-14331. https://doi.org/10.1073/pnas.0505775102
- Yang Z, Wolf IM, Chen H, Periyasamy S, Chen Z, Yong W, et al. 2006. FK506-Binding protein 52 is essential to uterine reproductive physiology controlled by the progesterone receptor A isoform. Mol. Endocrinol. 20: 2682-2694. https://doi.org/10.1210/me.2006-0024
- Hartmann J, Wagner KV, Liebl C, Scharf SH, Wang XD, Wolf M, et al. 2012. T he i nvolvement of F K5 06-binding protein 51 (FKBP5) in the behavioral and neuroendocrine effects of chronic social defeat stress. Neuropharmacology 62: 332-339. https://doi.org/10.1016/j.neuropharm.2011.07.041
- Kozany C, Marz A, Kress C, Hausch F. 2009. Fluorescent probes to characterise FK506-binding proteins. Chembiochem 10: 1402-1410. https://doi.org/10.1002/cbic.200800806
- Gopalakrishnan R, Kozany C, Wang Y, Schneider S, Hoogeland B, Bracher A, et al. 2012. Exploration of pipecolate sulfonamides as binders of the FK506-binding proteins 51 and 52. J. Med. Chem. 55: 4123-4131. https://doi.org/10.1021/jm201747c
- Sinars CR, Cheung-Flynn J, Rimerman RA, Scammell JG, Smith DF, Clardy J. 2003. Structure of the large FK506-binding protein FKBP51, an Hsp90-binding protein and a component of steroid receptor complexes. Proc. Natl. Acad. Sci. USA 100: 868-873. https://doi.org/10.1073/pnas.0231020100
- Blackburn EA, Walkinshaw MD. 2011. Targeting FKBP isoforms with small-molecule ligands. Curr. Opin. Pharmacol. 11: 365-371. https://doi.org/10.1016/j.coph.2011.04.007
- Bracher A, Kozany C, Hahle A, Wild P, Zacharias M, Hausch F. 2013. Crystal structures of the free and ligandbound FK1-FK2 domain segment of FKBP52 reveal a flexible inter-domain hinge. J. Mol. Biol. 425: 4134-4144. https://doi.org/10.1016/j.jmb.2013.07.041
- Gaali S, Kirschner A, Cuboni S, Hartmann J, Kozany C, Balsevich G, et al. 2015. Selective inhibitors of the FK506- binding protein 51 by induced fit. Nat. Chem. Biol. 11: 33-37. https://doi.org/10.1038/nchembio.1699
- Feng X, Sippel C, Bracher A, Hausch F. 2015. Structure-Affinity Relationship Analysis of Selective FKBP51 Ligands. J. Med. Chem. 58: 7796-7806. https://doi.org/10.1021/acs.jmedchem.5b00785
- Gold BG, Zeleny-Pooley M, Wang MS, Chaturvedi P, Armistead DM. 1997. A nonimmunosuppressant FKBP-12 ligand increases nerve regeneration. Exp. Neurol. 147: 269-278. https://doi.org/10.1006/exnr.1997.6630
- Armistead DM, Badia MC, Deininger DD, Duffy JP, Saunders JO, Tung RD, et al. 1995. Design, synthesis and structure of non-macrocyclic inhibitors of FKBP12, the major binding protein for the immunosuppressant FK506. Acta. Crystallogr. D 51: 522-528. https://doi.org/10.1107/S0907444994014502
- Costantini LC, Cole D, Chaturvedi P, Isacson O. 2001. Immunophilin ligands can prevent progressive dopaminergic degeneration in animal models of Parkinson's disease. Eur. J. Neurosci. 13: 1085-1092. https://doi.org/10.1046/j.0953-816x.2001.01473.x
- Steiner JP, Connolly MA, Valentine HL, Hamilton GS, Dawson TM, Hester L, et al. 1997. Neurotrophic actions of nonimmunosuppressive analogues of immunosuppressive drugs FK506, rapamycin and cyclosporin A. Nat. Med. 3: 421-428. https://doi.org/10.1038/nm0497-421
- Steiner JP, Hamilton GS, Ross DT, Valentine HL, Guo H, Connolly MA, et al. 1997. Neurotrophic immunophilin ligands stimulate structural and functional recovery in neurodegenerative animal models. Proc. Natl. Acad. Sci. USA 94: 2019-2024. https://doi.org/10.1073/pnas.94.5.2019
- Ruan B, Pong K, Jow F, Bowlby M, Crozier RA, Liu D, et al. 2008. Binding of rapamycin analogs to calcium channels and FKBP52 contributes to their neuroprotective activities. Proc. Natl. Acad. Sci. USA 105: 33-38. https://doi.org/10.1073/pnas.0710424105
- Ravina BM, Fagan SC, Hart RG, Hovinga CA, Murphy DD, Dawson TM, et al. 2003. Neuroprotective agents for clinical trials in Parkinson's disease: a systematic assessment. Neurology 60: 1234-1240. https://doi.org/10.1212/01.WNL.0000058760.13152.1A
- NINDS NET-PD Investigators. 2007. A randomized clinical trial of coenzyme Q10 and GPI-1485 in early Parkinson disease. Neurology 68: 20-28. https://doi.org/10.1212/01.wnl.0000250355.28474.8e
- Ban YH, Lee JH, Gu GR, Lee B, Mo S, Kwon HJ, et al. 2013. Mutational biosynthesis of a FK506 analogue containing a non-natural starter unit. Mol. Biosyst. 9: 944-947. https://doi.org/10.1039/c2mb25419k
Cited by
- Styrylpyridinium Derivatives as New Potent Antifungal Drugs and Fluorescence Probes vol.11, 2020, https://doi.org/10.3389/fmicb.2020.02077
- Protocol for an open label: phase I trial within a cohort of foetal cell transplants in people with Huntington’s disease vol.3, pp.1, 2020, https://doi.org/10.1093/braincomms/fcaa230
- Drug Resistance and Novel Therapeutic Approaches in Invasive Candidiasis vol.11, 2020, https://doi.org/10.3389/fcimb.2021.759408
- Bioengineering of Anti‐Inflammatory Natural Products vol.16, pp.5, 2020, https://doi.org/10.1002/cmdc.202000771