• Title/Summary/Keyword: neuronal activity

Search Result 558, Processing Time 0.023 seconds

Betulinic Acid Inhibits LPS-Induced MMP-9 Expression by Suppressing NF-kB Activation in BV2 Microglial Cells

  • Lee, Jae-Won;Choi, Yong-Joon;Kim, Song-In;Lee, Sue-Young;Kang, Sang-Soo;Kim, Nam-Ho;Kwon, Yong-Soo;Lee, Hee-Jae;Chun, Wan-Joo;Kim, Sung-Soo
    • Biomolecules & Therapeutics
    • /
    • v.19 no.4
    • /
    • pp.431-437
    • /
    • 2011
  • Aberrant activation of microglia has been reported to cause neuronal damages by releasing a variety of pro-inflammatory cytokines. Besides where microglia become active, damages have been also observed in remote places, which is considered due to the migration of activated microglia. Therefore, an agent that could suppress abnormal activation of microglia and their subsequent migration might be valuable in activated microglia-related brain pathologies. The objective of the present study was to evaluate anti-inflammatory effects of betulinic acid on lipopolysaccharide (LPS)-stimulated BV2 microglial cells. Pretreatment of betulinic acid significantly attenuated LPS-induced NO production and protein expression of iNOS. Betulinic acid also significantly suppressed LPS-induced release and expression of cytokines such as TNF-${\alpha}$ and IL-$1{\beta}$. Furthermore, betulinic acid significantly uppressed LPS-induced MMP-9 expression, which has been suggested to play an important role in the migration of activated microglia. In order to understand the possible mechanism by which betulinic acid suppresses LPS-induced cytokine production and migration of microglia, the role of NF-kB, a major pro-inflammatory transcription factor, was examined. Betulinic acid significantly suppressed LPS-induced degradation of IKB, which retains NF-kB in the cytoplasm. Therefore, nuclear translocation of NF-kB upon LPS stimulation was significantly suppressed with betulinic acid. Taken together, the present study for the first time demonstrates that betulinic acid possesses anti-inflammatory activity through the suppression of nuclear translocation of NF-kB in BV2 microglial cells.

A Study on Proliferation and Phenotypical Stability of Schwann Cell on Keratin/PLGA Film (케라틴이 첨가된 PLGA 필름에서 케라틴 함량별 SC세포의 증식 및 형태유지에 관한 연구)

  • Oh, A-Young;Kim, Soon-Hee;Kim, Yun-Tae;Jeon, Na-Ri;Yang, Jae-Chan;Lee, Sang-Jin;Yoo, James-J.;Van Dyke, Mark;Shin, Hyung-Sik;Rhee, John-M.;Khang, Gil-Son
    • Polymer(Korea)
    • /
    • v.33 no.2
    • /
    • pp.118-123
    • /
    • 2009
  • Keratin contains regulatory molecules that can enhance neuronal cell activity. We fabricated keratin/ PLGA films using 0, 10, 20, and 50 wt% of keratin using solvent casting method. We measured the contact angle of each film and cell proliferation was assayed by counting the cells attached on the film. Adhered cell morphology was confirmed by scanning electron microscope. RT-PCR was conducted to evaluate the gene expression of NF, NSE, and S-100, the Schwann cell markers. The keratin content of 20 and 50 wt% provided higher wettability than PLGA. The 20 wt% keratin was better in cell adhesion and proliferation of SCs than other keratin/PLGA films. The phenotypic stability of SC was maintained with the keratin content of 10 and 20 wt%.

Inhibitory Effects of Ethanol Extract of Rhodiola Sacra on Endoplasmic Reticulum Stress in Neuro-2A Cells (설치류 Neuro-2A 신경세포에서 홍경천 에탄올 추출물의 소포체 스트레스 억제효과)

  • Jo, Nam-Eun;Song, Young-soon
    • Journal of Digital Convergence
    • /
    • v.17 no.8
    • /
    • pp.265-270
    • /
    • 2019
  • Growing evidence suggests that mediating apoptotic cell death of ER stress plays an important role in pathological development of neurodegenerative diseases including Alzheimer's disease. The ethanol extract of Rodiola sacra (ERS) investigates whether ER stress protects neuroinvasive neuro-2A cells from homocysteine (Hcy) cell death and ER stress. In neuronal cells, Hcy markedly decreased the viability of the cells and induced the death of Annexin V-positive cells as confirmed by MTT assay. The Hcy cell viability and apoptotic loss pretreated with ERS were attenuated, and Hcy showed stress in the expression of C / EBP homologous protein, 78-kDa glucose regulatory protein and the junction of X-box binding protein-1 (xbp1) mRNA. ESR decreased Hcy-induced mRNA binding, GRP78 and CHOP cells induced Hcy-induced ER stress and apoptosis, and Western blotting revealed expression of heme oxygenase-1 and HO-1 enzyme activity Inhibition is indicative of therapeutic value for neurodegenerative diseases such as decreased cell death by hemin.

Ginseng gintonin alleviates neurological symptoms in the G93A-SOD1 transgenic mouse model of amyotrophic lateral sclerosis through lysophosphatidic acid 1 receptor

  • Nam, Sung Min;Choi, Jong Hee;Choi, Sun-Hye;Cho, Hee-Jung;Cho, Yeon-Jin;Rhim, Hyewhon;Kim, Hyoung-Chun;Cho, Ik-Hyun;Kim, Do-Geun;Nah, Seung-Yeol
    • Journal of Ginseng Research
    • /
    • v.45 no.3
    • /
    • pp.390-400
    • /
    • 2021
  • Background: We recently showed that gintonin, an active ginseng ingredient, exhibits antibrain neurodegenerative disease effects including multiple target mechanisms such as antioxidative stress and antiinflammation via the lysophosphatidic acid (LPA) receptors. Amyotrophic lateral sclerosis (ALS) is a spinal disease characterized by neurodegenerative changes in motor neurons with subsequent skeletal muscle paralysis and death. However, pathophysiological mechanisms of ALS are still elusive, and therapeutic drugs have not yet been developed. We investigate the putative alleviating effects of gintonin in ALS. Methods: The G93A-SOD1 transgenic mouse ALS model was used. Gintonin (50 or 100 mg/kg/day, p.o.) administration started from week seven. We performed histological analyses, immunoblot assays, and behavioral tests. Results: Gintonin extended mouse survival and relieved motor dysfunctions. Histological analyses of spinal cords revealed that gintonin increased the survival of motor neurons, expression of brain-derived neurotrophic factors, choline acetyltransferase, NeuN, and Nissl bodies compared with the vehicle control. Gintonin attenuated elevated spinal NAD(P) quinone oxidoreductase 1 expression and decreased oxidative stress-related ferritin, ionized calcium-binding adapter molecule 1-immunoreactive microglia, S100β-immunoreactive astrocyte, and Olig2-immunoreactive oligodendrocytes compared with the control vehicle. Interestingly, we found that the spinal LPA1 receptor level was decreased, whereas gintonin treatment restored decreased LPA1 receptor expression levels in the G93A-SOD1 transgenic mouse, thereby attenuating neurological symptoms and histological deficits. Conclusion: Gintonin-mediated symptomatic improvements of ALS might be associated with the attenuations of neuronal loss and oxidative stress via the spinal LPA1 receptor regulations. The present results suggest that the spinal LPA1 receptor is engaged in ALS, and gintonin may be useful for relieving ALS symptoms.

Virtual Screening and Testing of GSK-3 Inhibitors Using Human SH-SY5Y Cells Expressing Tau Folding Reporter and Mouse Hippocampal Primary Culture under Tau Cytotoxicity

  • Chih-Hsin Lin;Yu-Shao Hsieh;Ying-Chieh Sun;Wun-Han Huang;Shu-Ling Chen;Zheng-Kui Weng;Te-Hsien Lin;Yih-Ru Wu;Kuo-Hsuan Chang;Hei-Jen Huang;Guan-Chiun Lee;Hsiu Mei Hsieh-Li;Guey-Jen Lee-Chen
    • Biomolecules & Therapeutics
    • /
    • v.31 no.1
    • /
    • pp.127-138
    • /
    • 2023
  • Glycogen synthase kinase-3β (GSK-3β) is an important serine/threonine kinase that implicates in multiple cellular processes and links with the neurodegenerative diseases including Alzheimer's disease (AD). In this study, structure-based virtual screening was performed to search database for compounds targeting GSK-3β from Enamine's screening collection. Of the top-ranked compounds, 7 primary hits underwent a luminescent kinase assay and a cell assay using human neuroblastoma SH-SY5Y cells expressing Tau repeat domain (TauRD) with pro-aggregant mutation ΔK280. In the kinase assay for these 7 compounds, residual GSK-3β activities ranged from 36.1% to 90.0% were detected at the IC50 of SB-216763. In the cell assay, only compounds VB-030 and VB-037 reduced Tau aggregation in SH-SY5Y cells expressing ΔK280 TauRD-DsRed folding reporter. In SH-SY5Y cells expressing ΔK280 TauRD, neither VB-030 nor VB-037 increased expression of GSK-3α Ser21 or GSK-3β Ser9. Among extracellular signal-regulated kinase (ERK), AKT serine/threonine kinase 1 (AKT), mitogen-activated protein kinase 14 (P38) and mitogenactivated protein kinase 8 (JNK) which modulate Tau phosphorylation, VB-037 attenuated active phosphorylation of P38 Thr180/ Tyr182, whereas VB-030 had no effect on the phosphorylation status of ERK, AKT, P38 or JNK. However, both VB-030 and VB-037 reduced endogenous Tau phosphorylation at Ser202, Thr231, Ser396 and Ser404 in neuronally differentiated SH-SY5Y expressing ΔK280 TauRD. In addition, VB-030 and VB-037 further improved neuronal survival and/or neurite length and branch in mouse hippocampal primary culture under Tau cytotoxicity. Overall, through inhibiting GSK-3β kinase activity and/or p-P38 (Thr180/Tyr182), both compounds may serve as promising candidates to reduce Tau aggregation/cytotoxicity for AD treatment.

Effects of Coptidis Rhizoma on the Anti-inflammation and Motor Recovery in Photothrombotic Brain Infarction Model in Rats (광화학적 뇌경색 백서 모델에서 황련의 항염증 및 운동기능 회복에 미치는 효과)

  • Lee, Su-Kyung;Lee, In;Shin, Sun-Ho;Kim, Eun-Young;Shin, Byung-Cheul
    • The Korea Journal of Herbology
    • /
    • v.24 no.1
    • /
    • pp.179-189
    • /
    • 2009
  • Objectives : Coptidis Rhizoma (Coptis japonica MAKINO; CR) is a well known crude drug as antimicrobial, antibacterial, anti-inflammatory, antioxidant activity. However, there is no study of the effect of CR on brain infarction and it's mechanism. The aim of this study was to investigate the effects on ischemic stroke induced by photothrombotic infarction by evaluating the functional & neuronal recovery after brain infarction. Materials & Methods : Male Sprague-Dawley rats (250-300 g) were induced photothrombotic brain infarction on sensorimotor cortex, and brain infarction volume by image J software (NIH, USA) after Nissl stain, also single pellet reaching task as a functional motor recovery were observed. After orally pretreated by CR (500 mg/kg) or normal saline as a sham control before 7 days from the time of photothrombotic infarction, rats were sacrificed. After then we analysed anti-inflammatory cytokines (TNF-$\alpha$, IL-6, IL-1$\beta$), by RT-PCR and ELISA method, and immunohistochemistry (GFAP, connexin-43) as a marker of neural plasticity. Results : CR (100, 250, 500 mg/kg) decreased the infarction volume dose-dependently, however the effect of 500mg/kg of CR (CR 500) showed the best (P=0.051). Also, CR 500 decreased the infarction volume time-dependently, the most effective time was 3-7 days after stroke. Photothrombosis increased inflammatory cytokines after infarction, CR 500 suppressed significantly mRNA expression of IL-1$\beta$, IL-6 and TNF-$\alpha$. In serum, CR 500 decreased the amount of IL-1$\beta$, 12h, 24h and 48h respectively (p < 0.05), also decreased that of IL-6 and TNF-$\alpha$, 12h respectively (p < 0.05) after infarction. The more astrocytes were observed and neural plasticity was facilitated in the rat brain of CR 500 than that of sham control in immunohistochemistry. Conclusions : This results suggest that CR decrease infarction volume and improve functional motor recovery in acute stage in photothrombotic ischemic infarction model in the mechanism of anti-inflammation and promoting neural plasticity.

Changes of c-Fos Immunoreactivity in Midbrain by Deep Pain and Effects of Aspirin (심부통증이 흰쥐 중뇌에 미치는 c-Fos 면역반응성의 변화와 아스피린의 효과)

  • Jung, Jin A;Yoo, Ki Soo;Hwang, Kyu Keun
    • Clinical and Experimental Pediatrics
    • /
    • v.46 no.7
    • /
    • pp.695-701
    • /
    • 2003
  • Purpose : It had been suggested that pain arising from deep somatic body regions influences neural activity within periaqueductal gray(PAG) of midbrain via distinct spinal pathways. Aspirin is one of the popular non-steroidal anti-inflammatory drugs used in the management of pain. Fos expression was used as a marker for neuronal activity throughout central neurons following painful peripheral stimulation. This study was prepared to investigate changes of c-Fos immunoreactivity in midbrain by deep pain and effects of aspirin. Methods : Male Sprague-Dawley rats were injected with 0.1 mL of 5% formalin in the plantar muscle of the right hindpaw. For experimental group II, aspirin was injected intravenously before injection of formalin. An aspirin-untreated group was utilized as group I. Rats were sacrificed at 0.5, 1, 2, 6 and 24 hours after formalin injection. Rat's brains were removed and sliced in rat brain matrix. Brain slices were coronally sectioned at interaural 1.00-1.36 mm. Serial sections were immunohistochemically reacted with polyclonal c-Fos antibody. The numbers of c-Fos protein immunoreactive neurons in ventrolateral periaqueductal gray(VLPAG) and dorsomedial periaqueductal gray(DMPAG) were counted and analyzed statistically with Mann-Whitney U tests. Results : Higher numbers of c-Fos protein immunoreactive neurons were found in VLPAG. In both VLPAG and DMPAG of formalin-treated group, the numbers of c-Fos protein immunoreactive neurons were significantly higher at all time points than the formalin-untreated group, which peaked at two hours. The numbers of c-Fos immunoreactive neuron of the aspirin-treated group were less compared to the aspirin-untreated group at each time point. Conclusion : These results provide some basic knowledge in understanding the mechanism of formalin-induced deep somatic pain and the effects of aspirin.

Industrial potential of domestic Zanthoxylum piperitum and Zanthoxylum schinifolium: Protective effect of both extracts on high glucose-induced neurotoxicity (국내산 초피와 산초의 산업적 활용 가능성: 고당으로 유도된 뇌신경세포 독성에 대한 추출물의 보호 효과)

  • Han, Hye Ju;Park, Seon Kyeong;Kim, Min Ji;An, Jun Woo;Lee, Se Jin;Kang, Jin Yong;Kim, Jong Min;Heo, Ho Jin
    • Korean Journal of Food Science and Technology
    • /
    • v.52 no.3
    • /
    • pp.274-283
    • /
    • 2020
  • This study focused on the in vitro investigation of antioxidant and anti-diabetic activities, along with neuroprotection against high glucose-induced cytotoxicity, in order to evaluate the physiological effects of Zanthoxylum piperitum and Zanthoxylum schinifolium. The highest total phenolic content was measured in the 40% ethanolic extracts of Zanthoxylum piperitum (EZP) and Zanthoxylum schinifolium (EZS). The in vitro EZP antioxidant activity showed a relatively higher ABTS/DPPH radical scavenging activity and malondialdehyde inhibitory effect than that of EZS. The EZP inhibited carbohydrate hydrolysis (α-glucosidase and α-amylase) more efficiently than EZS in anti-diabetic tests. However, EZS showed a more efficient inhibition of advanced glycation end-products formation than EZP. In addition, both EZP and EZS effectively protected human-derived neuronal cells from high glucose-induced cytotoxicity. Finally, the physiological compounds were analyzed using UPLC IMS-QTOF/MSE, and the main EZP (quercetin-3-O-glucoside and 3-caffeoylquinic acid) and EZS (5-caffeoylquinic acid) compounds were identified as phenolic compounds.

Effects of Ginseng and Its Saponins on Experimental Amnesia in Mice and on Cell Cultures of Neurons (인삼 및 인삼 사포닌이 쥐의 건망증 및 신경세포배양에 미치는 영향)

  • Saito Hiroshi;Nishiyama Nobuyoshi;Iwai Akihiko;Kawajiri Shinichi;Himi Toshiyuki;Sakai Toshimi;Fukunaka Chizu
    • Proceedings of the Ginseng society Conference
    • /
    • 1988.08a
    • /
    • pp.92-98
    • /
    • 1988
  • The present study was performed to find the effects of ginseng and its saponins. which is written in Chung Yao Ta Tsu Tien as anti-amnesia in its chief indication. on experimental amnesia in mice. In the step through test. ginsenoside $Rb_1\;(GRb_1)\;and\;GRg_1$ facilitated the registration of memory and antagonized the electroconvulsive shock (ECS)-induced inhibition of the retention of memory. Moreover. $GRg_1$ antagonized the EtOH-induced inhibition of the retrieval of memory. In the step down test. $GRb_1\;GRb_2\;and\;GRg_1$ antagonized the ECS-induced inhibition of the retention of memory. Moreover. $GRg_1$ antagonized the EtOH-induced inhibition of the retrieval of memory and facilitated the acquisition of short term memory. In the shuttle hox and lever press tests. they have no effects on acquisition and retrieval of memory. except $GRb_1\;GRb_1$ depressed the retrieval of conditioned avoidance response in the shuttle box test. After the end of four tests. the effects of these orally administered drugs on sedative. analgesic. antipyretic and anticonvulsant actions. and on spontaneous and exploratory movements were tested in doses of less than 500mg/kg. but they had none of these effects. Present study may indicate that $GRg_1$ had effects on the retrieval of memory and on the acquisition process of learning response. The recent research on the role of NGF for the survival. regeneration and regulation of brain in adult animals. indicated the importance of NGF on dementia and amnesia. During our research on the specificity of the neurite out growth induced by NGF. we found that the effect of NGF was potentiated by $GRb_1$ in organ cultures of chick embryonic dorsal root ganglia. Then. the effect of $GRb_1$ on neuronal cell survivalin cell culture system was studied. $GRb_1$ potentiated the NGF-mediated increase of neurofilaments in cell cultures of chick embryonic sensory and sympathetic neurons. NGF with $GRb_1$ also showed a tendency to increase the number of surviving neurons of rat embryonic cerebral cortex. NGF increased choline acetyl transferase activity in cell cultures of rat embryonic septum area neurons. but $GRb_1$ did not potentiate NGF activity in cell cultures of rat embryonic septum area neurons. Present study may indicate that $GRb_1$ plays an important role for the survival or regeneration of neurons in the brain.

  • PDF

Effect of gomchwi (Ligularia fischeri) extract against high glucose- and H2O2-induced oxidative stress in PC12 cells (PC12 신경세포에서 고당 및 과산화수소로 유도된 산화적 스트레스에 대한 곰취 추출물의 효과)

  • Park, Sang Hyun;Park, Seon Kyeong;Ha, Jeong Su;Lee, Du Sang;Kang, Jin Yong;Kim, Jong Min;Lee, Uk;Heo, Ho Jin
    • Korean Journal of Food Science and Technology
    • /
    • v.48 no.5
    • /
    • pp.508-514
    • /
    • 2016
  • Effects of the ethyl acetate fraction from gomchwi (Ligularia fischeri) extract against high $glucose/H_2O_2-induced$ oxidative stress and in vitro neurodegeneration were investigated to confirm the physiological property of the extract. The ethyl acetate fraction of gomchwi extract showed the highest total phenolic contents than the other solvent fractions. An anti-hyperglycemic activity of the ethyl acetate fraction was evaluated using the ${\alpha}-glucosidase$ inhibitory assay, and the half maximal inhibitory concentration ($IC_{50}$) value for ${\alpha}-glucosidase$ was found to be $727.64{\mu}g/mL$. In addition, the ethyl acetate fraction showed excellent 2,2'-azino-bis (3-ethylbenzthiazoline-6-sulfonic acid) diammonium salt radical scavenging activity, and inhibition of malondialdehyde production. The ethyl acetate fraction also decreased intracellular reactive oxygen species, whereas neuronal cell viability against high glucose/$H_2O_2$-induced cytotoxicity was found to be increased. Finally, 3,5-dicaffeoylquinic acid as a main phenolic compound in the ethyl acetate fraction was analyzed by high-performance liquid chromatography. These results suggest that gomchwi might be a good natural source of functional materials to prevent diabetic neurodegeneration.