DOI QR코드

DOI QR Code

Betulinic Acid Inhibits LPS-Induced MMP-9 Expression by Suppressing NF-kB Activation in BV2 Microglial Cells

  • Lee, Jae-Won (Department of Pharmacology, College of Medicine, Kangwon National University) ;
  • Choi, Yong-Joon (Department of Pharmacology, College of Medicine, Kangwon National University) ;
  • Kim, Song-In (Department of Pharmacology, College of Medicine, Kangwon National University) ;
  • Lee, Sue-Young (Department of Pharmacology, College of Medicine, Kangwon National University) ;
  • Kang, Sang-Soo (Department of Pharmacology, College of Medicine, Kangwon National University) ;
  • Kim, Nam-Ho (Department of Pharmacology, College of Medicine, Kangwon National University) ;
  • Kwon, Yong-Soo (College of Pharmacy, Kangwon National University) ;
  • Lee, Hee-Jae (Department of Pharmacology, College of Medicine, Kangwon National University) ;
  • Chun, Wan-Joo (Department of Pharmacology, College of Medicine, Kangwon National University) ;
  • Kim, Sung-Soo (Department of Pharmacology, College of Medicine, Kangwon National University)
  • Received : 2011.03.25
  • Accepted : 2011.09.15
  • Published : 2011.10.30

Abstract

Aberrant activation of microglia has been reported to cause neuronal damages by releasing a variety of pro-inflammatory cytokines. Besides where microglia become active, damages have been also observed in remote places, which is considered due to the migration of activated microglia. Therefore, an agent that could suppress abnormal activation of microglia and their subsequent migration might be valuable in activated microglia-related brain pathologies. The objective of the present study was to evaluate anti-inflammatory effects of betulinic acid on lipopolysaccharide (LPS)-stimulated BV2 microglial cells. Pretreatment of betulinic acid significantly attenuated LPS-induced NO production and protein expression of iNOS. Betulinic acid also significantly suppressed LPS-induced release and expression of cytokines such as TNF-${\alpha}$ and IL-$1{\beta}$. Furthermore, betulinic acid significantly uppressed LPS-induced MMP-9 expression, which has been suggested to play an important role in the migration of activated microglia. In order to understand the possible mechanism by which betulinic acid suppresses LPS-induced cytokine production and migration of microglia, the role of NF-kB, a major pro-inflammatory transcription factor, was examined. Betulinic acid significantly suppressed LPS-induced degradation of IKB, which retains NF-kB in the cytoplasm. Therefore, nuclear translocation of NF-kB upon LPS stimulation was significantly suppressed with betulinic acid. Taken together, the present study for the first time demonstrates that betulinic acid possesses anti-inflammatory activity through the suppression of nuclear translocation of NF-kB in BV2 microglial cells.

Keywords

References

  1. Aquilano, K., Baldelli, S., Rotilio, G. and Ciriolo, M. R. (2008) Role of nitric oxide synthases in Parkinson's disease: a review on the antioxidant and anti-infl ammatory activity of polyphenols. Neurochem. Res. 33, 2416-2426. https://doi.org/10.1007/s11064-008-9697-6
  2. Bonizzi, G. and Karin, M. (2004) The two NF-kappaB activation pathways and their role in innate and adaptive immunity. Trends Immunol. 25, 280-288. https://doi.org/10.1016/j.it.2004.03.008
  3. Chao, C. C. (1992) Cytokine release from microglia: differential inhibition by pentoxifylline and dexamethasone. J. Infect Dis. 166, 847-853. https://doi.org/10.1093/infdis/166.4.847
  4. Chintharlapalli, S., Papineni, S., Ramaiah, S. K. and Safe, S. (2007) Betulinic acid inhibits prostate cancer growth through inhibition of specifi city protein transcription factors. Cancer Res. 67, 2816-2823. https://doi.org/10.1158/0008-5472.CAN-06-3735
  5. Cho, I. H., Hong, J., Suh, E. C., Kim, J. H., Lee, H., Lee, J. E., Lee, S., Kim, C. H., Kim, D. W., Jo, E. K., Lee, K. E., Karin, M. and Lee, S. J. (2008) Role of microglial IKKbeta in kainic acid-induced hippocampal neuronal cell death. Brain 131, 3019-3033. https://doi.org/10.1093/brain/awn230
  6. Choi, M. S., Cho, K. S. and Shin, S. M. (2010) ATP induced microglial cell migration through non-transcriptional activation of matrix metalloproteinase- 9. Arch. Pharm. Res. 33, 257-265. https://doi.org/10.1007/s12272-010-0211-8
  7. Cuzner, M. L. and Opdenakker, G. (1999) Plasminogen activators and matrix metalloproteases, mediators of extracellular proteolysis in infl ammatory demyelination of the central nervous system. J. Neuroimmunol. 94, 1-14. https://doi.org/10.1016/S0165-5728(98)00241-0
  8. Do, J. C., Chai, J. Y. and Son, K. H. (1991) Studies on the components of Lycopus lucidus (I). Kor. J. Pharacogn. 22, 162-165.
  9. Fujioka, T., Kashiwada, Y., Kilkuskie, R. E., Cosentino, L. M., Ballas, L. M., Jiang, J. B., Janzen, W. P., Chen, I. S. and Lee, K. H. (1994) Anti-AIDS agents, 11. Betulinic acid and platanic acid as anti-HIV principles from Syzigium clavifl orum, and the anti-HIV activity of structurally related triterpenoids. J. Nat. Prod. 57, 243-247. https://doi.org/10.1021/np50104a008
  10. Fulda, S. (2008) Betulinic Acid for cancer treatment and prevention. Int. J. Mol. Sci. 9, 1096-1107. https://doi.org/10.3390/ijms9061096
  11. Ghosh, S., May, M. J. and Kopp, E. B. (1998) NF-kappa B and Rel proteins: evolutionarily conserved mediators of immune responses. Annu. Rev. Immunol. 16, 225-260. https://doi.org/10.1146/annurev.immunol.16.1.225
  12. Graber, M. B. and Streit, W. J. (2010) Microglia: biology and pathology. Acta. Neuropathol 119, 89-105. https://doi.org/10.1007/s00401-009-0622-0
  13. Hailer, N. P. (2008) Immunosuppression after traumatic or ischemic CNS damage: it is neuroprotective and illuminates the role of microglial cells. Prog. Neurobiol. 84, 211-233. https://doi.org/10.1016/j.pneurobio.2007.12.001
  14. Hashioka, S., McGeer, P. L., Monji, A. and Kanba, S. (2009) Anti-infl ammatory effects of antidepressants: possibilities for preventives against Alzheimer's disease. Cent. Nerv. Syst. Agents Med. Chem. 9, 12-19. https://doi.org/10.2174/187152409787601897
  15. Itagaki, S., McGeer, P. L., Akiyama, H., Zhu, S. and Selkoe, D. (1989) Relationship of microglia and astrocytes to amyloid deposits of Alzheimer disease. J. Neuroimmunol. 24, 173-182. https://doi.org/10.1016/0165-5728(89)90115-X
  16. Kappert, K., Meyborg, H., Clemenz, M., Graf, K., Fleck, E., Kintscher, U. and Stawowy, P. (2008) Insulin facilitates monocyte migration: a possible link to tissue infl ammation in insulin-resistance. Biochem. Biophys. Res. Commun. 365, 503-508. https://doi.org/10.1016/j.bbrc.2007.11.006
  17. Karin, M., Takahashi, T., Kapahi, P., Delhase, M., Chen, Y., Makris, C., Rothwarf, D., Baud, V., Natoli, G., Guido, F. and Li, N. (2001) Oxidative stress and gene expression: the AP-1 and NF-kappaB connections. Biofactors 15, 87-89. https://doi.org/10.1002/biof.5520150207
  18. Kato, H. and Walz, W. (2000) The initiation of the microglial response. Brain Pathol. 10, 137-143.
  19. Kreutzberg, G. W. (1996) Microglia: a sensor for pathological events in the CNS. Trends Neurosci. 19, 312-318. https://doi.org/10.1016/0166-2236(96)10049-7
  20. Lee, J. W., Cheong, I. Y. and Kim, H. S. (2011) Anti-inflammatory Activity of 1-docosanoyl Cafferate Isolated from Rhus verniciflua in LPS-stimulated BV2 Microglial Cells. Korean J. Physiol. Pharmacol. 15, 9-15. https://doi.org/10.4196/kjpp.2011.15.1.9
  21. Q., Park, P. W., Wilson, C. L. and Parks, W. C. (2002) Matrilysin shedding of syndecan-1 regulates chemokine mobilization and transepithelial efflux of neutrophils in acute lung injury. Cell 111, 635-646. https://doi.org/10.1016/S0092-8674(02)01079-6
  22. Li, Q. and Verma, I. M. (2002) NF-kappaB regulation in the immune system. Nat. Rev. Immunol. 2, 725-734. https://doi.org/10.1038/nri910
  23. Lu, Q., Xia, N. and Xu, H. (2011) Betulinic acid protects against cerebral ischemia-reperfusion injury in mice by reducing oxidative and nitrosative stress. Nitric. Oxide. 30;24(3), 132-138. https://doi.org/10.1016/j.niox.2011.01.007
  24. Matsumoto, H. (1992) [Some markers refl ecting the pathology and disease activity of multiple sclerosis]. No To Shinkei 44, 95-102.
  25. McGeer, P. L. and McGeer, E. G. (1998) Glial cell reactions in neurodegenerative diseases: pathophysiology and therapeutic interventions. Alzheimer Dis. Assoc. Disord. 12(Suppl 2), S1-6. https://doi.org/10.1097/00002093-199803000-00001
  26. McQuibban, G. A., Gong, J. H., Tam, E. M., McCulloch, C. A., Clark- Lewis, I. and Overall, C. M. (2000) Inflammation dampened by gelatinase A cleavage of monocyte chemoattractant protein-3. Science 289, 1202-1206. https://doi.org/10.1126/science.289.5482.1202
  27. Merrill, J. E. and Benveniste, E. N. (1996) Cytokines in inflammatory brain lesions: helpful and harmful. Trends Neurosci. 19, 331-338. https://doi.org/10.1016/0166-2236(96)10047-3
  28. Merrill, J. E. and Chen, I. S. (1991) HIV-1, macrophages, glial cells, and cytokines in AIDS nervous system disease. FASEB J 5, 2391-2397.
  29. Patra, A., Chaudhuri, K. S. and Panda, K. S. (1988) Betulun-3-cafferate from Quercus suber 13C-NMNR spectra of some lupense. J. Nat. Prod. 51, 217-220. https://doi.org/10.1021/np50056a004
  30. Perry, V. H. and Gordon, S. (1988) Macrophages and microglia in the nervous system. Trends Neurosci. 11, 273-277. https://doi.org/10.1016/0166-2236(88)90110-5
  31. Ray, B. and Lahiri, D. K. (2009) Neuroinfl ammation in Alzheimer's disease: different molecular targets and potential therapeutic agents including curcumin. Curr. Opin. Pharmacol. 9, 434-444. https://doi.org/10.1016/j.coph.2009.06.012
  32. Recio, M. C., Giner, R. M., Manez, S., Gueho, J., Julien, H. R., Hostettmann, K. and Rios, J. L. (1995) Investigations on the steroidal antiinfl ammatory activity of triterpenoids from Diospyros leucomelas. Planta. Med. 61, 9-12. https://doi.org/10.1055/s-2006-957988
  33. Sellebjerg, F. and Sorensen, T. L. (2003) Chemokines and matrix metalloproteinase-9 in leukocyte recruitment to the central nervous system. Brain Res. Bull. 61, 347-355. https://doi.org/10.1016/S0361-9230(03)00097-2
  34. Soler, F., Poujade, C., Evers, M., Carry, J. C., Henin, Y., Bousseau, A., Huet, T., Pauwels, R., De Clercq, E., Mayaux, J. F., Le Pecq, J. B. and Dereu, N. (1996) Betulinic acid derivatives: a new class of specific inhibitors of human immunodefi ciency virus type 1 entry. J. Med. Chem. 39, 1069-1083. https://doi.org/10.1021/jm950669u
  35. Tuttolomondo, A., Di Raimondo, D., di Sciacca, R., Pinto, A. and Licata, G. (2008) Inflammatory cytokines in acute ischemic stroke. Curr. Pharm. Des. 14, 3574-3589. https://doi.org/10.2174/138161208786848739
  36. Woo, M. S., Park, J. S., Choi, I. Y., Kim, W. K. and Kim, H. S. (2008) Inhibition of MMP-3 or -9 suppresses lipopolysaccharide-induced expression of proinflammatory cytokines and iNOS in microglia. J. Neurochem. 106, 770-780. https://doi.org/10.1111/j.1471-4159.2008.05430.x
  37. Yogeeswari, P. and Sriram, D. (2005) Betulinic acid and its derivatives: a review on their biological properties. Curr. Med. Chem. 12, 657-666. https://doi.org/10.2174/0929867053202214
  38. Yong, V. W., Krekoski, C. A., Forsyth, P. A., Bell, R. and Edwards, D. R. (1998) Matrix metalloproteinases and diseases of the CNS. Trends Neurosci. 21, 75-80. https://doi.org/10.1016/S0166-2236(97)01169-7
  39. Zuo, J., Ferguson, T. A., Hernandez, Y. J., Stetler-Stevenson, W. G. and Muir, D. (1998) Neuronal matrix metalloproteinase-2 degrades and inactivates a neurite-inhibiting chondroitin sulfate proteoglycan. J. Neurosci. 18, 5203-5211.

Cited by

  1. The decrease of paclitaxel efflux by pretreatment of interferon-γ and tumor necrosis factor-α after intracerebral microinjection vol.1499, 2013, https://doi.org/10.1016/j.brainres.2013.01.005
  2. Methanol extracts of Xanthium sibiricum roots inhibit inflammatory responses via the inhibition of nuclear factor-κB (NF-κB) and signal transducer and activator of transcription 3 (STAT3) in murine macrophages vol.174, 2015, https://doi.org/10.1016/j.jep.2015.07.038
  3. Selective inhibition of MMP-9 gene expression by mangiferin in PMA-stimulated human astroglioma cells: Involvement of PI3K/Akt and MAPK signaling pathways vol.66, pp.1, 2012, https://doi.org/10.1016/j.phrs.2012.02.013
  4. Inhibitory Effects of Betulinic Acid on LPS-Induced Neuroinflammation Involve M2 Microglial Polarization via CaMKKβ-Dependent AMPK Activation vol.11, pp.1662-5099, 2018, https://doi.org/10.3389/fnmol.2018.00098
  5. Betulinic acid attenuates cyclophosphamide-induced intestinal mucosa injury by inhibiting the NF-κB/MAPK signalling pathways and activating the Nrf2 signalling pathway vol.225, pp.None, 2011, https://doi.org/10.1016/j.ecoenv.2021.112746