DOI QR코드

DOI QR Code

Inhibitory Effects of Ethanol Extract of Rhodiola Sacra on Endoplasmic Reticulum Stress in Neuro-2A Cells

설치류 Neuro-2A 신경세포에서 홍경천 에탄올 추출물의 소포체 스트레스 억제효과

  • Jo, Nam-Eun (Alternative Medicine from Daejeon University) ;
  • Song, Young-soon (Graduate School of Oriental Culture Graduate School of Medicinal Crop Science)
  • 조남은 (대전대학교 대체의학과) ;
  • 송영순 (동방문화대학원대학교 약용작물학)
  • Received : 2019.06.03
  • Accepted : 2019.08.20
  • Published : 2019.08.28

Abstract

Growing evidence suggests that mediating apoptotic cell death of ER stress plays an important role in pathological development of neurodegenerative diseases including Alzheimer's disease. The ethanol extract of Rodiola sacra (ERS) investigates whether ER stress protects neuroinvasive neuro-2A cells from homocysteine (Hcy) cell death and ER stress. In neuronal cells, Hcy markedly decreased the viability of the cells and induced the death of Annexin V-positive cells as confirmed by MTT assay. The Hcy cell viability and apoptotic loss pretreated with ERS were attenuated, and Hcy showed stress in the expression of C / EBP homologous protein, 78-kDa glucose regulatory protein and the junction of X-box binding protein-1 (xbp1) mRNA. ESR decreased Hcy-induced mRNA binding, GRP78 and CHOP cells induced Hcy-induced ER stress and apoptosis, and Western blotting revealed expression of heme oxygenase-1 and HO-1 enzyme activity Inhibition is indicative of therapeutic value for neurodegenerative diseases such as decreased cell death by hemin.

성장하는 증거는 소포체 (ER) 스트레스의 매개 세포 사멸이 알츠하이머병을 포함한 신경 퇴행성 질환의 병리학적 발달에 중요한 역할을 한다. 로디올라 사크라(ERS)의 에탄올 추출물은 ER 스트레스 유도제인 호모시스테인(Hcy)세포 사멸과 ER 스트레스의 신경 neuro -2A 세포를 보호할 수 있는지를 조사한다. 뉴런 세포에서 Hcy는 MTT 분석에 의해 확인된 바와 같이 세포 생존 가능성은 현저히 감소시켰고, Annexin V 양성 세포의 사멸을 유도했다. ERS로 전처리한 Hcy세포 생존력 및 세포 사멸 손실은 약화되었으며, Hcy는 C/EBP 상 동성 단백질과 78-kDa 포도당 조절 단백질의 발현 및 X-box 결합 단백질 -1 (xbp1) mRNA의 접합에 스트레스를 유도했다. ESR은 Hcy에 의해 유도된 xbp-1 mRNA 접합, GRP78 및 CHOP 세포를 감소시켜 Hcy-induced ER 스트레스 및 세포 사멸에 대한 보호를 나타내며, Western blotting 분석에 heme oxygenase-1의 발현 및 HO-1 효소 활성 억제는 hemin에 의한 세포 사멸을 감소시키는 등 신경 퇴행성 질환에 치료적 가치를 보여준다.

Keywords

References

  1. A. P. P. Adaptogen. (2001). Rhodiola rosea: a possible plant adaptogen. Altern Med Rev, 6(3), 293-302.
  2. D. S. Ming et. al. (2005). Bioactive compounds from Rhodiola rosea (Crassulaceae). Phytother Res, (9), 740-743. https://doi.org/10.1002/ptr.1597
  3. National Pharmacopoeia Commission. (2000). Pharmacopoeia of the People's Republic of China Appendix. Beijing, Chemical Industry Press. p. 27.
  4. Editorial Board of China National Herbal Medicine, Chinese Materia Medica. (1999). Zhonghua Bencao. Shanghai, Shanghai Science and Technology Press. p. 763.
  5. Zhou Ronghan. Traditional Chinese Medicine Resources. (1987). Beijing, China Medical Science and Technology Press. pp. 83-85.
  6. K. D. Prasad et al. (2005). Cytoprotective and antioxidant activity of Rhodiola imbricata against tert-butyl hydroperoxide induced oxidative injury in U-937 human macrophages. Mol Cell Biochem. 275(1-2), 1-6. DOI: 10.1007/s11010-005-7637-1
  7. V. Darbinyan, A. Kteyan, A. Panossian, E. Gabrielian, G. Wikman & H. Wagner.(2007). Rhodiola rosea in stress induced fatigue-a double blind cross-over study of a standardized extract SHR-5 with a repeated low-dose regimen on the mental performance of healthy physicians during night duty. Phytomedicine, 7(5), 365-371. DOI: 10.1016/s0944-7113(00)80055-0
  8. V. A. Shevtsov et al. (2003). A randomized trial of two different doses of a SHR-5 Rhodiola rosea extract versus placebo and control of capacity for mental work. Phytomedicine, 10(2-3), 95-105. DOI: 10.1078/094471103321659780
  9. I. Mook-Jung et al. (2002). Neuroprotective effects of constituents of the oriental crude drugs, Rhodiola sacra, R. sachalinensis and Tokaku-joki-to, against beta-amyloid toxicity, oxidative stress and apoptosis. Biological and Pharmaceutical Bulletin, 25(8), 1101-1104. DOI: 10.1248/bpb.25.1101
  10. V. D. Petkov et al. (1986). Effects of alcohol aqueous extract from Rhodiola rosea L. roots on learning and memory. Acta physiologica et pharmacologica Bulgarica, 12(1), 3-16.
  11. M. Abidov, F. Crendal, S. Grachev, R. Seifulla & T. Ziegenfuss. (2003). Effect of extracts from Rhodiola rosea and Rhodiola crenulata (Crassulaceae) roots on ATP content in mitochondria of skeletal muscles. Bulletin of experimental biology and medicine, 136(6), 85-587. DOI: 10.1023/b:bebm.0000020211.24779.15
  12. K. De Bock, B. O. Eijnde, M. Ramaekers & P. Hespel. (2004). Acute Rhodiola rosea intake can mprove endurance exercise performance. International journal of sport nutrition & exercise metabolism, 14(3), 298-307. DOI: 10.1123/ijsnem.14.3.298
  13. H. C. Huang, D. Tang, S. Y. Lu & Z. F. Jiang. (2015). Endoplasmic reticulum stress as a novel neuronal mediator in Alzheimer's disease. Neurol Res. 37(4), 366-374. DOI: 10.1179/1743132814y.0000000448
  14. A. I. Placido et al. (2014). The role of endoplasmic reticulum in amyloid precursor protein processing and trafficking: implications for Alzheimer's disease. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease, 1842(9), 1444-1453. DOI: 10.1016/j.bbadis.2014.05.003
  15. J. Q. Li, J. T. Yu, T. Jiang & L. Tan. (2015). Endoplasmic reticulum dysfunction in Alzheimer's disease, Molecular neurobiology, 51(1), 383-395. DOI: 10.1007/s12035-014-8695-8
  16. M. Suzanne & M. Tong. (2014). Brain metabolic dysfunction at the core of Alzheimer's disease. Biochemical pharmacology, 88(4), 548-559. DOI: 10.1016/j.bcp.2013.12.012
  17. L. Salvado, X. Palomer, E. Barroso & M. Vazquez-Carrera. (2015). Targeting endoplasmic reticulum stress in insulin resistance. Trends in Endocrinology & Metabolism, 26(8), 438-448. DOI: 10.1016/j.tem.2015.05.007
  18. F. Navid & R. A. Colbert. (2017). Causes and consequences of endoplasmic reticulum stress in rheumatic disease. Nature Reviews Rheumatology, 13(1), 25-40. DOI: 10.1038/nrrheu:m.2016.192
  19. M. Maurel, E. Chevet, J. Tavernier & S. Gerlo.(2014). Getting RIDD of RNA: IRE1 in cell fate regul ation. Trends in biochemical sciences, 39(5), 245-254. DOI: 10.1016/j.tibs.2014.02.008
  20. Y. Zhu, Y. J. Zhang, W. W. Liu, A. W. Shi & N. Gu. (2016). Salidroside suppresses HUVECs cell injury induced by oxidative stress through activating the Nrf2 signaling pathway. Molecules, 21(8), 1033. DOI: 10.3390/molecules21081033
  21. L. Zhang et al. (2010). Neuroprotective effects of salidroside against beta-amyloid-induced oxidative stress in SH-SY5Y human neuroblastoma cells. Neurochem Int., 57(5), 547-555. DOI: 10.1016/j.neuint.2010.06.021
  22. L. Zhang et al. (2007). Protective effects of salidroside on hydrogen peroxide-induced apoptosis in SH-SY5Y human neuroblastoma cells. Eur J Pharmacol. 5641-3) 18-25. DOI: 10.1016/j.ejphar.2007.01.089
  23. B. M. Gardner, D. Pincus, K. Gotthardt, C. M. Gallagher & P. Walter. (2013). Endoplasmic reticulum stress sensing in the unfolded protein response. Cold Spring Harbor perspectives in biology, 5(3), a013169. https://doi.org/10.1101/cshperspect.a013169
  24. R. Sano & J. C. Reed. (2013). ER stress-induced cell death mechanisms. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 1833(12), 3460-3470. DOI: 10.1016/j.bbamcr.2013.06.028