• Title/Summary/Keyword: neural network.

Search Result 11,770, Processing Time 0.035 seconds

Estimating the compressive strength of HPFRC containing metallic fibers using statistical methods and ANNs

  • Perumal, Ramadoss;Prabakaran, V.
    • Advances in concrete construction
    • /
    • v.10 no.6
    • /
    • pp.479-488
    • /
    • 2020
  • The experimental and numerical works were carried out on high performance fiber reinforced concrete (HPFRC) with w/cm ratios ranging from 0.25 to 0.40, fiber volume fraction (Vf)=0-1.5% and 10% silica fume replacement. Improvements in compressive and flexural strengths obtained for HPFRC are moderate and significant, respectively, Empirical equations developed for the compressive strength and flexural strength of HPFRC as a function of fiber volume fraction. A relation between flexural strength and compressive strength of HPFRC with R=0.78 was developed. Due to the complex mix proportions and non-linear relationship between the mix proportions and properties, models with reliable predictive capabilities are not developed and also research on HPFRC was empirical. In this paper due to the inadequacy of present method, a back propagation-neural network (BP-NN) was employed to estimate the 28-day compressive strength of HPFRC mixes. BP-NN model was built to implement the highly non-linear relationship between the mix proportions and their properties. This paper describes the data sets collected, training of ANNs and comparison of the experimental results obtained for various mixtures. On statistical analyses of collected data, a multiple linear regression (MLR) model with R2=0.78 was developed for the prediction of compressive strength of HPFRC mixes, and average absolute error (AAE) obtained is 6.5%. On validation of the data sets by NNs, the error range was within 2% of the actual values. ANN model has given the significant degree of accuracy and reliability compared to the MLR model. ANN approach can be effectively used to estimate the 28-day compressive strength of fibrous concrete mixes and is practical.

Analysis of Incident Impact Factors and Development of SMOGN-DNN Model for Prediction of Incident Clearance Time (돌발상황 처리시간 예측을 위한 영향요인 분석 및 SMOGN-DNN 모델 개발)

  • Yun, Gyu Ri;Bae, Sang Hoon
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.20 no.4
    • /
    • pp.46-56
    • /
    • 2021
  • Predicting the incident clearance time is important for eliminating the high transportation costs and congestion from non-repetitive congestion caused by incidents. In this study, the factors influencing the clearance time suitable for domestic road conditions were analyzed, using a training dataset for predicting the incident clearance time using artificial neural networks. In a previous study, the under-prediction problem for high incident clearance time was used. In the present study, over-sampling training data applied using the SMOGN technique was obtained and applied to the model as a solution. As a result, the DNN model applying the SMOGN technique could compensate for the limitations of the previously developed prediction model by predicting the clearance time with the highest accuracy among the models developed in the research process with MAE = 18.3 minutes.

Predicting patient experience of Invisalign treatment: An analysis using artificial neural network

  • Xu, Lin;Mei, Li;Lu, Ruiqi;Li, Yuan;Li, Hanshi;Li, Yu
    • The korean journal of orthodontics
    • /
    • v.52 no.4
    • /
    • pp.268-277
    • /
    • 2022
  • Objective: Poor experience with Invisalign treatment affects patient compliance and, thus, treatment outcome. Knowing the potential discomfort level in advance can help orthodontists better prepare the patient to overcome the difficult stage. This study aimed to construct artificial neural networks (ANNs) to predict patient experience in the early stages of Invisalign treatment. Methods: In total, 196 patients were enrolled. Data collection included questionnaires on pain, anxiety, and quality of life (QoL). A four-layer fully connected multilayer perception with three backpropagations was constructed to predict patient experience of the treatment. The input data comprised 17 clinical features. The partial derivative method was used to calculate the relative contributions of each input in the ANNs. Results: The predictive success rates for pain, anxiety, and QoL were 87.7%, 93.4%, and 92.4%, respectively. ANNs for predicting pain, anxiety, and QoL yielded areas under the curve of 0.963, 0.992, and 0.982, respectively. The number of teeth with lingual attachments was the most important factor affecting the outcome of negative experience, followed by the number of lingual buttons and upper incisors with attachments. Conclusions: The constructed ANNs in this preliminary study show good accuracy in predicting patient experience (i.e., pain, anxiety, and QoL) of Invisalign treatment. Artificial intelligence system developed for predicting patient comfort has potential for clinical application to enhance patient compliance.

COVID-19 Lung CT Image Recognition (COVID-19 폐 CT 이미지 인식)

  • Su, Jingjie;Kim, Kang-Chul
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.3
    • /
    • pp.529-536
    • /
    • 2022
  • In the past two years, Severe Acute Respiratory Syndrome Coronavirus-2(SARS-CoV-2) has been hitting more and more to people. This paper proposes a novel U-Net Convolutional Neural Network to classify and segment COVID-19 lung CT images, which contains Sub Coding Block (SCB), Atrous Spatial Pyramid Pooling(ASPP) and Attention Gate(AG). Three different models such as FCN, U-Net and U-Net-SCB are designed to compare the proposed model and the best optimizer and atrous rate are chosen for the proposed model. The simulation results show that the proposed U-Net-MMFE has the best Dice segmentation coefficient of 94.79% for the COVID-19 CT scan digital image dataset compared with other segmentation models when atrous rate is 12 and the optimizer is Adam.

Development and Usability Evaluation of Hand Rehabilitation Training System Using Multi-Channel EMG-Based Deep Learning Hand Posture Recognition (다채널 근전도 기반 딥러닝 동작 인식을 활용한 손 재활 훈련시스템 개발 및 사용성 평가)

  • Ahn, Sung Moo;Lee, Gun Hee;Kim, Se Jin;Bae, So Jeong;Lee, Hyun Ju;Oh, Do Chang;Tae, Ki Sik
    • Journal of Biomedical Engineering Research
    • /
    • v.43 no.5
    • /
    • pp.361-368
    • /
    • 2022
  • The purpose of this study was to develop a hand rehabilitation training system for hemiplegic patients. We also tried to find out five hand postures (WF: Wrist Flexion, WE: Wrist Extension, BG: Ball Grip, HG: Hook Grip, RE: Rest) in real-time using multi-channel EMG-based deep learning. We performed a pre-processing method that converts to Spider Chart image data for the classification of hand movement from five test subjects (total 1,500 data sets) using Convolution Neural Networks (CNN) deep learning with an 8-channel armband. As a result of this study, the recognition accuracy was 92% for WF, 94% for WE, 76% for BG, 82% for HG, and 88% for RE. Also, ten physical therapists participated for the usability evaluation. The questionnaire consisted of 7 items of acceptance, interest, and satisfaction, and the mean and standard deviation were calculated by dividing each into a 5-point scale. As a result, high scores were obtained in immersion and interest in game (4.6±0.43), convenience of the device (4.9±0.30), and satisfaction after treatment (4.1±0.48). On the other hand, Conformity of intention for treatment (3.90±0.49) was relatively low. This is thought to be because the game play may be difficult depending on the degree of spasticity of the hemiplegic patient, and compensation may occur in patient with weakened target muscles. Therefore, it is necessary to develop a rehabilitation program suitable for the degree of disability of the patient.

Analysis of Building Object Detection Based on the YOLO Neural Network Using UAV Images (YOLO 신경망 기반의 UAV 영상을 이용한 건물 객체 탐지 분석)

  • Kim, June Seok;Hong, Il Young
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.39 no.6
    • /
    • pp.381-392
    • /
    • 2021
  • In this study, we perform deep learning-based object detection analysis on eight types of buildings defined by the digital map topography standard code, leveraging images taken with UAV (Unmanned Aerial Vehicle). Image labeling was done for 509 images taken by UAVs and the YOLO (You Only Look Once) v5 model was applied to proceed with learning and inference. For experiments and analysis, data were analyzed by applying an open source-based analysis platform and algorithm, and as a result of the analysis, building objects were detected with a prediction probability of 88% to 98%. In addition, the learning method and model construction method necessary for the high accuracy of building object detection in the process of constructing and repetitive learning of training data were analyzed, and a method of applying the learned model to other images was sought. Through this study, a model in which high-efficiency deep neural networks and spatial information data are fused will be proposed, and the fusion of spatial information data and deep learning technology will provide a lot of help in improving the efficiency, analysis and prediction of spatial information data construction in the future.

Electroencephalogram-based emotional stress recognition according to audiovisual stimulation using spatial frequency convolutional gated transformer (공간 주파수 합성곱 게이트 트랜스포머를 이용한 시청각 자극에 따른 뇌전도 기반 감정적 스트레스 인식)

  • Kim, Hyoung-Gook;Jeong, Dong-Ki;Kim, Jin Young
    • The Journal of the Acoustical Society of Korea
    • /
    • v.41 no.5
    • /
    • pp.518-524
    • /
    • 2022
  • In this paper, we propose a method for combining convolutional neural networks and attention mechanism to improve the recognition performance of emotional stress from Electroencephalogram (EGG) signals. In the proposed method, EEG signals are decomposed into five frequency domains, and spatial information of EEG features is obtained by applying a convolutional neural network layer to each frequency domain. As a next step, salient frequency information is learned in each frequency band using a gate transformer-based attention mechanism, and complementary frequency information is further learned through inter-frequency mapping to reflect it in the final attention representation. Through an EEG stress recognition experiment involving a DEAP dataset and six subjects, we show that the proposed method is effective in improving EEG-based stress recognition performance compared to the existing methods.

Normal data based rotating machine anomaly detection using CNN with self-labeling

  • Bae, Jaewoong;Jung, Wonho;Park, Yong-Hwa
    • Smart Structures and Systems
    • /
    • v.29 no.6
    • /
    • pp.757-766
    • /
    • 2022
  • To train deep learning algorithms, a sufficient number of data are required. However, in most engineering systems, the acquisition of fault data is difficult or sometimes not feasible, while normal data are secured. The dearth of data is one of the major challenges to developing deep learning models, and fault diagnosis in particular cannot be made in the absence of fault data. With this context, this paper proposes an anomaly detection methodology for rotating machines using only normal data with self-labeling. Since only normal data are used for anomaly detection, a self-labeling method is used to generate a new labeled dataset. The overall procedure includes the following three steps: (1) transformation of normal data to self-labeled data based on a pretext task, (2) training the convolutional neural networks (CNN), and (3) anomaly detection using defined anomaly score based on the softmax output of the trained CNN. The softmax value of the abnormal sample shows different behavior from the normal softmax values. To verify the proposed method, four case studies were conducted, on the Case Western Reserve University (CWRU) bearing dataset, IEEE PHM 2012 data challenge dataset, PHMAP 2021 data challenge dataset, and laboratory bearing testbed; and the results were compared to those of existing machine learning and deep learning methods. The results showed that the proposed algorithm could detect faults in the bearing testbed and compressor with over 99.7% accuracy. In particular, it was possible to detect not only bearing faults but also structural faults such as unbalance and belt looseness with very high accuracy. Compared with the existing GAN, the autoencoder-based anomaly detection algorithm, the proposed method showed high anomaly detection performance.

Luma Mapping Function Generation Method Using Attention Map of Convolutional Neural Network in Versatile Video Coding Encoder (VVC 인코더에서 합성 곱 신경망의 어텐션 맵을 이용한 휘도 매핑 함수 생성 방법)

  • Kwon, Naseong;Lee, Jongseok;Byeon, Joohyung;Sim, Donggyu
    • Journal of Broadcast Engineering
    • /
    • v.26 no.4
    • /
    • pp.441-452
    • /
    • 2021
  • In this paper, we propose a method for generating luma signal mapping function to improve the coding efficiency of luma signal mapping methods in LMCS. In this paper, we propose a method to reflect the cognitive and perceptual features by multiplying the attention map of convolutional neural networks on local spatial variance used to reflect local features in the existing LMCS. To evaluate the performance of the proposed method, BD-rate is compared with VTM-12.0 using classes A1, A2, B, C and D of MPEG standard test sequences under AI (All Intra) conditions. As a result of experiments, the proposed method in this paper shows improvement in performance the average of -0.07% for luma components in terms of BD-rate performance compared to VTM-12.0 and encoding/decoding time is almost the same.

Implementation of Encoder/Decoder to Support SNN Model in an IoT Integrated Development Environment based on Neuromorphic Architecture (뉴로모픽 구조 기반 IoT 통합 개발환경에서 SNN 모델을 지원하기 위한 인코더/디코더 구현)

  • Kim, Hoinam;Yun, Young-Sun
    • Journal of Software Assessment and Valuation
    • /
    • v.17 no.2
    • /
    • pp.47-57
    • /
    • 2021
  • Neuromorphic technology is proposed to complement the shortcomings of existing artificial intelligence technology by mimicking the human brain structure and computational process with hardware. NA-IDE has also been proposed for developing neuromorphic hardware-based IoT applications. To implement an SNN model in NA-IDE, commonly used input data must be transformed for use in the SNN model. In this paper, we implemented a neural coding method encoder component that converts image data into a spike train signal and uses it as an SNN input. The decoder component is implemented to convert the output back to image data when the SNN model generates a spike train signal. If the decoder component uses the same parameters as the encoding process, it can generate static data similar to the original data. It can be used in fields such as image-to-image and speech-to-speech to transform and regenerate input data using the proposed encoder and decoder.