Acknowledgement
이 논문 또는 저서는 2019년 대한민국 교육부와 한국연구재단의 인문사회분야 중견연구자지원사업의 지원을 받아 수행된 연구임(NRF-2019S1A5A2A01037618).
References
- Chen, Z., Zhang, T., and Ouyang, C. (2018), End-to-end airplane detection using transfer learning in remote sensing images. Remote Sensing, 10(1), pp.139. https://doi.org/10.3390/rs10010139
- Cheng, G., Han, J., and Lu, X. (2017), Remote sensing image scene classification: Benchmark and state of the art. In Proceedings of the IEEE, 105(10), pp. 1865-1883. https://doi.org/10.1109/JPROC.2017.2675998
- Deng, J., Dong, W., Socher, R., Li, L. J., Li, K., and Fei-Fei, L. (2009,), Imagenet: A large-scale hierarchical image database. In 2009 IEEE conference on computer vision and pattern recognition, pp. 248-255.
- Everingham, M., Van Gool, L., Williams, C.K., Winn, J., and Zisserman, A. (2010), The pascal visual object classes (voc) challenge. International journal of computer vision, 88(2), pp.303-338. https://doi.org/10.1007/s11263-009-0275-4
- Girshick, R., Donahue, J., Darrell, T., & Malik, J. (2014). Rich feature hierarchies for accurate object detection and semantic segmentation. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 580-587).
- Girshick, R. (2015). Fast r-cnn. In Proceedings of the IEEE international conference on computer vision (pp. 1440-1448).
- Ham, S., and Lee., I. (2019). Semantic Segmentation of Drone Images Using Deep Learning Models Trained with National Geospatial Data. Journal of the Korean Society Geospatial Information Science, 27(3), 27-38. (in Korean with English abstract) https://doi.org/10.7319/kogsis.2019.27.3.027
- Kharchenko, V., and Chyrka, I. (2018), Detection of airplanes on the ground using YOLO neural network. In 2018 IEEE 17th international conference on mathematical methods in electromagnetic theory (MMET), IEEE, pp. 294-297.
- Kim, H., Kim, J., and Kim, Y, (2019). A Study on the Object-based Building Extraction Using UAV Imagery. Journal of the Korean Society Geospatial Information Science, 27(4), 21-28. (in Korean with English abstract) https://doi.org/10.7319/kogsis.2019.27.4.021
- Laroca, R., Severo, E., Zanlorensi, L. A., Oliveira, L. S., Goncalves, G. R., Schwartz, W. R., and Menotti, D. (2018), A robust real-time automatic license plate recognition based on the YOLO detector. In 2018 international joint conference on neural networks (ijcnn), IEEE, pp. 1-10.
- Lee, C., and Hong, I. (2017). Investigation of topographic characteristics of parcels using UAV and machine learning. Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography, 35(5), 349-356. (in Korean with English abstract) https://doi.org/10.7848/KSGPC.2017.35.5.349
- Li, K., Wan, G., Cheng, G., Meng, L., and Han, J. (2020). Object detection in optical remote sensing images: A survey and a new benchmark. ISPRS Journal of Photogrammetry and Remote Sensing, 159, 296-307. https://doi.org/10.1016/j.isprsjprs.2019.11.023
- Lin, T.Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., ... and Zitnick, C. L. (2014, September). Microsoft coco: Common objects in context. In European conference on computer vision (pp. 740-755). Springer, Cham.
- Lu, J., Ma, C., Li, L., Xing, X., Zhang, Y., Wang, Z., and Xu, J. (2018). A vehicle detection method for aerial image based on YOLO. Journal of Computer and Communications, 6(11), 98-107. https://doi.org/10.4236/jcc.2018.611009
- Park, H., Byun, S., and Lee, H. (2020). Application of Deep Learning Method for Real-Time Traffic Analysis using UAV. Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography, 38(4), 353-361.(in Korean with English abstract) https://doi.org/10.7848/KSGPC.2020.38.4.353
- Pavlov, V.A., and Galeeva, M.A. (2019), Detection and recognition of objects on aerial photographs using convolutional neural networks. In Journal of Physics: Conference Series (Vol. 1326, No. 1, p. 012038). IOP Publishing. https://doi.org/10.1088/1742-6596/1326/1/012038
- Pham, M.T., Courtrai, L., Friguet, C., Lefevre, S., and Baussard, A. (2020). YOLO-Fine: One-stage detector of small objects under various backgrounds in remote sensing images. Remote Sensing, 12(15), 2501. https://doi.org/10.3390/rs12152501
- Pi, Y., Nath, N.D., and Behzadan, A.H. (2020). Convolutional neural networks for object detection in aerial imagery for disaster response and recovery. Advanced Engineering Informatics, 43, 101009. https://doi.org/10.1016/j.aei.2019.101009
- Radovic, M., Adarkwa, O., and Wang, Q. (2017). Object recognition in aerial images using convolutional neural networks. Journal of Imaging, 3(2), 21. https://doi.org/10.3390/jimaging3020021
- Redmon, J., Divvala, S., Girshick, R., and Farhadi, A. (2016). You only look once: Unified, real-time object detection. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 779-788.
- Wang, H., Tong, X., and Lu, F. (2020). Deep learning based target detection algorithm for motion capture applications. In Journal of Physics: Conference Series (Vol. 1682, No. 1, p. 012032). IOP Publishing. https://doi.org/10.1088/1742-6596/1682/1/012032
- Yun Y., Jung S., Kim T., Lee K., Park., Yeom J., and Han Y. (2019). Detection of Damaged Buildings in Forest Fire Area using PlanetScope Satellite Images and UAV image. Proceedings of Korean Society for Geospatial information Science, 125-128.