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Predicting patient experience of Invisalign 
treatment: An analysis using artificial neural 
network

Objective: Poor experience with Invisalign treatment affects patient compliance 
and, thus, treatment outcome. Knowing the potential discomfort level in 
advance can help orthodontists better prepare the patient to overcome the 
difficult stage. This study aimed to construct artificial neural networks (ANNs) to 
predict patient experience in the early stages of Invisalign treatment. Methods: 
In total, 196 patients were enrolled. Data collection included questionnaires on 
pain, anxiety, and quality of life (QoL). A four-layer fully connected multilayer 
perception with three backpropagations was constructed to predict patient 
experience of the treatment. The input data comprised 17 clinical features. The 
partial derivative method was used to calculate the relative contributions of 
each input in the ANNs. Results: The predictive success rates for pain, anxiety, 
and QoL were 87.7%, 93.4%, and 92.4%, respectively. ANNs for predicting 
pain, anxiety, and QoL yielded areas under the curve of 0.963, 0.992, and 
0.982, respectively. The number of teeth with lingual attachments was the most 
important factor affecting the outcome of negative experience, followed by the 
number of lingual buttons and upper incisors with attachments. Conclusions: 
The constructed ANNs in this preliminary study show good accuracy in 
predicting patient experience (i.e., pain, anxiety, and QoL) of Invisalign 
treatment. Artificial intelligence system developed for predicting patient comfort 
has potential for clinical application to enhance patient compliance. 
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INTRODUCTION

Artificial intelligence (AI) has been developing rapidly 
and has made remarkable achievements in various do-
mains of medicine and dentistry.1 Compared with the 
traditional logistic regression models, artificial neural 
networks (ANNs) with multilayer perceptions (MLP) have 
shown an advantage in modelling complicated nonlin-
ear relationships, with higher sensitivity, specificity, and 
accuracy for medical diagnosis.2 In a study that deter-
mined the cervical vertebrae stages in orthodontics, ANN 
demonstrated high accuracy value and was the most 
stable among the algorithms evaluated, which included 
k-nearest neighbors, naive Bayes, decision tree, support 
vector machine, and random forest.3 Given its capa-
bilities of modelling nonlinear relationships in a high-
dimensional data set, ANN has provided new approaches 
for orthodontists in automated cephalometric analysis 
and cone beam computed tomography image segmenta-
tion, accurate diagnosis, and treatment planning.4 

Invisalign, one of the fastest-developing orthodontic 
appliances in dentistry, translates orthodontic treatment 
plans into a series of clear aligners to align teeth.5 Al-
though Invisalign is more esthetic and comfortable than 
traditional fixed appliances,6,7 in our clinical practice, 
some patients still complain about a varying degree of 
discomfort and anxiety.8,9 Both traditional appliances 
and Invisalign have caused, to some extent, oral dys-
function, mucosal irritation, difficulty in chewing, and 
swollen throat or tongue.10,11 This could reduce the wear 
time of aligners and compliance, thus influencing the 
treatment outcome,12 and a small number of patients 
even give up treatment because of terrible experi-
ence.13,14 Therefore, attention to mental status should be 
considered in the treatment plan for the best possible 
patient-centered care.

Theoretically, the complexity of an appliance may 
directly affect a patient’s comfort level. However, the 
impact of different aligner designs and the relationship 
among them are unclear. Clinical evidence for predicting 
patient experience using ANN is lacking. Therefore, an AI 
system was constructed for patient comfort prediction, 
which can be later applied in software to help ortho-
dontists predict the comfort level of designed aligners. 
If significant discomfort is detected, some modifications 
and health education can be considered in advance to 
improve the patient’s comfort level and compliance. This 
study aimed to construct ANNs to predict patient ex-
perience (i.e., pain, anxiety, and quality of life [QoL]) of 
Invisalign treatment based on different designs of Invis-
align treatment to, ultimately, help clinicians identify in-
dividuals at risk of poor patient experience and reduced 
treatment compliance. 

MATERIALS AND METHODS

Study design and subject selection
This prospective cohort study was approved by the 

Ethics Committee of the West China Hospital of Stoma-
tology, Sichuan University (WCHSIRB-D-2019-073) and 
was conducted according to the tenets of the Declara-
tion of Helsinki. Written informed consent was obtained 
from all the patients. 

A total of 196 patients wearing Invisalign clear align-
ers (Align Technology, Phoenix, AZ, USA) were recruited 
at the Department of Orthodontics, West China Hospital 
of Stomatology, Sichuan University, Chengdu, China 
between 2018 and 2021. The sample size was decided 
based on practical grounds (existing study cohort) and 
in reference to similar studies concerning AI systems.15-17 
The inclusion criteria were: (1) age 18–50 years; (2) 
planned wearing of Invisalign clear aligners; and (3) no 
history of major dentoalveolar diseases. The exclusion 
criteria were as follows: (1) dental and oral diseases, 
such as caries, periodontal diseases, and temporoman-
dibular joint disorders; (2) severe systemic diseases; (3) 
psychological and mental disorders; and (4) current 
medications that treat or cause pain and mental dis-
eases. Tooth extraction surgeries and the placement of 
temporary anchorage devices would interfere with, and 
even mask, the patients’ self-reported discomfort from 
the aligner designs. Therefore, these surgeries were per-
formed at least 1 week before or after the questionnaire 
investigation to avoid potential interference. All the 
patients wore clear aligners attached following the same 
protocol (22 h/day for 10 days).

Data collection and assessments
Clinical patient records were obtained from hospital 

databases. The animation scheme and treatment design 
of the Invisalign treatment (with anonymized personal 
information) were collected from ClinCheck (Align Tech-
nology). A total of 17 clinical features were collected 
from the medical records and ClinCheck (Table 1). Given 
the complexity of clinical practice, the features were 
not grouped together based on any experience, such as 
grouping the elastics and precision cut together, and 
were maintained as originally as possible.

The patients were asked to fill in the questionnaires 
daily for 8 days: the day before and the first 7 days after 
wearing the first set of aligners. The questionnaires in-
cluded the visual analog scale (VAS) of pain, Self-Rating 
Anxiety Scale (SAS), and Oral Health Impact Profile-14 
(OHIP-14) based on the literature.18-20 In VAS, the de-
gree of pain was assessed by marking the pain level on 
a 10-mm straight line, ranging from 0 mm (no pain) to 
10 mm (worst pain). In SAS, the level of anxiety was as-
sessed using 20 questions, with each question answered 
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as occasionally, sometimes, often, or always. In OHIP-14, 
the QoL was assessed using 14 items, with 5 options for 
responses: never, hardly, occasionally, fairly often, and 
very often. These questionnaires have been validated to 
have good reliability. 

Dataset pre-processing
All elements of the input clinical features were nor-

malized in the range of 0 to 1. The normalization of the 
input is presented in Table 1. Maximum minimum nor-
malization, a linear and hyperparameter-free method, 
was utilized for normalization of integral and continu-
ous features. This is because non-linear methods, such 
as dividing subgroups (analysis of data grouping) and 
non-linear curves, would introduce more hyperparam-

eters and increase the complexity of the ANN model and 
the risk of overfitting. For the binary feature, the raw 
value was already normalized and, therefore, remained 
unchanged. The label for patient experience was 0 or 
1. After collecting the questionnaire scores of patient 
experience, the differences in pain, anxiety, and QoL 
between the highest and lowest scores were calculated 
to address inter-patient subjectivity. A higher difference 
indicated a more negative patient experience with the 
Invisalign treatment. 

The differences were then binarized using thresholds, 
which were determined as the averages of the above dif-
ferences (3.0 for pain, 6.5 for anxiety, and 7.0 for QoL). 
Patients with differences higher than the threshold were 
considered positive samples (label = 1) and those with 

Table 1. Input normalization in the three artificial neural networks

Categories Data type Criterion

Age (yr) Integral MMN

Treatment stage Binary First-time 0

Refinement 1

Crowding (mm) Discrete No 0

I° 1/3

II° 2/3

III° 1

With/without extraction Binary Yes 1

No 0

Number of extractions Integral MMN

Wearing aligners and bonding attachments simultaneously or separately Binary Yes 1

No 0

With/without molar distalization Binary Yes 1

No 0

With/without elastics Binary Yes 1

No 0

Number of elastics Integral MMN

With/without interproximal reduction Binary Yes 1

No 0

Amount of interproximal reduction (mm) Continuous MMN

Number of teeth with attachments Integral MMN

Number of teeth with optimized attachments Integral MMN

Number of teeth with lingual attachments Integral MMN

Number of upper incisors with attachments Integral MMN

Number of lingual buttons Integral MMN

With/without precision cut Binary Yes 1

No 0

The crowding data classification: I°, 0 mm ≤ crowding < 4 mm; II°, 4 mm ≤ crowding < 8 mm; and III°, crowding ≥ 8 mm.
MMN, maximum minimum normalization.
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differences lower than the threshold were considered 
negative (label = 0). Table 2 shows the number of pa-
tients with positive and negative labels distributed in the 
training, validation, and test sets. Given that the number 
of positive and negative samples varied for different pre-
diction targets of pain, anxiety, and QoL, samples with 
different labels were randomly divided among the data-
sets. Thereafter, the positive and negative samples were 
almost equally distributed in the training, validation, 
and test sets for each ANN. The binarized values were 
the final prediction targets.

Construction of artificial neural networks 
Figure 1 shows the ANN analysis process. The 17 clini-

cal features (Table 1) for each patient were collected as 
inputs. Three ANNs were constructed to predict whether 
negative experiences would occur in patients receiving 
their first set of aligners. The ANNs were four-layer fully 
connected MLPs, with 17 input nodes, two hidden layers 
with nine hidden nodes per layer, and one output node. 
The rectified linear units (ReLU) function was chosen as 
the activation function for nonlinearity after each hid-
den layer. It is calculated as follows:

ReLU(x) = {x, x ≥ 0
0, x < 0

Table 2. Number of patients with positive and negative tags in the training, validation, and test sets in the three 
artificial neural networks

Dataset
Pain Anxiety Quality of life

Positive Negative Total Positive Negative Total Positive Negative Total

Training set 45 71 116 48 64 112 62 61 123

Validation set 16 20 36 16 15 39 17 18 35

Test set 16 28 44 25 20 45 18 28 38

Total set 77 119 196 83 113 196 97 99 196

The changes are calculated as the difference between the highest and lowest scores. Higher values indicate more negative 
patient experience with the Invisalign treatment. The values are then binarized using predefined thresholds to distinguish 
between positive and negative samples at the following cutoffs: 3.0 for pain, 6.5 for anxiety, and 7.0 for quality of life. The 
binarized values are the final prediction targets. 

Inputs
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Tooth
extraction

Traction
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Pain
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Quality of life

Dataset

Trainin set

Prediction system
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Learning set
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Figure 1. Flow diagram of 
the construction of artificial 
neural networks. The three 
artificial neural networks are 
fully connected and includes 
two hidden layers with a hid-
den size of nine. 



Xu et al • Artificial intelligence to predict patient experience

www.e-kjo.org272 https://doi.org/10.4041/kjod21.255

where x is the value calculated by linear operations be-
fore the activation function.21

A positive probability was obtained by applying a 
nonlinear sigmoid function to the value of the output 
node. It is calculated as follows:

sigmoid (x) =
1

(1)
1 + exp(–x)’

where x is the result of the output node.22 The other 
two ANNs for anxiety and QoL prediction shared the 
same model structure but were trained separately; there-
fore, the parameter values were different. During the 
training stage, random dropout with a probability of 0.5 
was adopted in the hidden layer, which randomly set the 
activation values of a certain number of hidden nodes 
to 0 to increase the training stability. The binary cross-
entropy (BCE) loss was used to calculate the difference 
between the ground truth and the predicted result. It is 
calculated as follows:

 BCE (x) = − [(1-y) log (1-x) + ylog (x)] (2)

where y is the ground truth label, and x is the predicted 
result of the ANN. The backpropagation algorithm was 
used to update the parameters of the neural network 
based on equation (2). The learning rate was set to 0.1, 
according to recent literature.23 An adaptive moment 
(Adam) estimation optimizer was used to update the 
ANN parameters.24

Training and evaluation of ANNs
The dataset of the 196 patients was divided into the 

training, validation, and test sets in a ratio of 3:1:1.23,25 

Although the back propagation method could be used 
to train the ANN parameters, there were still some un-
trainable hyper-parameters, such as the learning rate, 
total number of training steps, and number of nodes in 
the hidden layer. To determine these hyperparameters, a 
four-fold cross-validation method was used in the train-
ing and validation sets.17,26 For each validation fold, the 
samples within the training and validation sets were first 
combined and then randomly divided into two in a 3:1 
ratio. 

The larger part was used to optimize the parameters of 
the ANNs, and the smaller part was used to monitor the 
training process and check for overfitting. Normally, the 
loss in the smaller part will first decrease for some train-
ing steps and then start to increase at a certain point, 
producing a minimum. This procedure was repeated four 
times for each set of hyperparameters, and the average 
loss was calculated. The set of hyperparameters with 
the smallest loss was selected. After all hyperparameters 

were determined through validation, the training and 
validation sets were combined again to train the final 
model. The test set was held-out and not available dur-
ing all the processes stated above and was only used to 
evaluate the success rate of the final model.

Each sample was labeled either 0 or 1, but the pre-
dicted probability of the ANN using equation (1) ranged 
from 0 to 1. Therefore, a threshold was needed to deter-
mine whether the sample was influenced by bad experi-
ences. 

We defined a determination of pain, anxiety, and de-
creased QoL for each patient as the predicted probability 
being higher than the corresponding optimum diag-
nostic cutoff value derived from the receiver operating 
characteristic (ROC) curves.27 Using the cutoff value, the 
predicted probability of each sample was binarized into 
0 and 1. If the prediction of one sample was equal to 
its label, then it was counted as a success sample; oth-
erwise, it was considered as a failure sample. The suc-
cess rate of prediction, sensitivity, specificity, and area 
under the ROC curve (AUC) were used to evaluate the 
ANN performance. As the training and validation sets 
were all used during training, the success rate was high. 
However, the test set was held-out during the training 
process to simulate a real situation in which the model 
predicts experiences for new patients. Therefore, if the 
success rate was also high on the test set, we can as-
sume with certainty that the model could perform well 
in real scenes.

Analysis of contributions of input features
The partial derivatives method, widely applied in pro-

viding the contribution profile of input factors, was used 
to calculate the relative contributions of inputs and rank 
them in order.28 The contribution of each input to each 
ANN was calculated, indicating the influence of each 
feature on the output of pain, anxiety, and QoL. The 
total contribution of the three ANNs for each input was 
also calculated, with higher values of the total contribu-
tion denoting a higher influence of each input factor on 
the output of the overall negative experience with equal 
weights.

RESULTS

Accuracy of ANN prediction of patient experience
The learning curves of the three ANNs during cross-

validation are shown in Figures 2A-2C. For the training 
and validation losses, the training loss was optimized 
during training, and the validation loss was used to de-
termine when the learning was sufficient and whether 
to stop the training process. The training loss decreased 
slowly with fluctuation, while the validation loss de-
creased relatively quickly in the early stage and quickly 
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saturated. After training for certain epochs, the valida-
tion loss stopped decreasing and started to increase. This 
means that although the model behaved better on the 
training set, its accuracy on the validation set did not 
improve. This was a sign of overfitting, and the training 
procedure was therefore stopped at the lowest point of 
the validation loss curve. It could also be seen that the 
validation loss was consistently higher than the training 
loss for the prediction of anxiety and QoL because the 

model was optimized only on the training set. Based on 
the learning curves, training for pain, anxiety, and QoL 
was stopped at 25, 24, and 22 epochs, respectively. 

The ROC and AUC are effective and comprehensive 
measures for assessing the inherent validity of a di-
agnostic test and the overall performance of the ROC 
curve. The AUC, sensitivity, and specificity of predict-
ing pain, anxiety, and QoL are shown in Figures 2D-
2F and Table 3. The results demonstrated satisfactory 

Table 3. Performance of artificial neural networks for patient experience

Performance Pain Anxiety Quality of life

AUC 0.963 (0.904, 0.972) 0.992 (0.983, 0.995) 0.982 (0.950, 0.990)

Sensitivity 0.885 (0.803–0.984) 0.952 (0.921–0.968) 0.937 (0.899–0.975)

Specificity 0.890 (0.813–0.934) 0.955 (0.920–0.977) 0.937 (0.873–0.962)

Data are presented as the median (95% confidence interval).
AUC, area under the curve. 

Figure 2. Prediction performance of the artificial neural networks (ANNs). The learning curves of ANNs for pain (A), 
anxiety (B), and quality of life (C). Red lines represent train loss curve; purple lines, validation loss curve. Arrows indicate 
the lowest point of validation loss curve, which means the training procedure for pain, anxiety, and quality of life are 
stopped at 25, 24, and 22 epochs, respectively. The ROC curves of ANNs for pain (D), anxiety (E), and quality of life (F). 
The optimum diagnostic cutoff value is marked as purple points, where the sensitivity and specificity are shown upon 
the arrows. 
ROC, receiver operating characteristic; AUC, area under the curve.
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performance of the three ANNs in predicting patient 
discomfort. The success rates of the ANNs were calcu-
lated according to the ROC curves. The overall success 
rate of ANN for pain prediction was 87.7%, and the 
success rates of the training, validation, and test sets 
were 87.9% (95% confidence interval [CI]: 83.6–90.5%), 
86.1% (95% CI: 83.3–91.7%), and 88.6% (95% CI: 
84.1–93.2%), respectively. The total success rate of 
anxiety prediction was 93.4%, and the success rates of 
the training, validation, and test sets were 94.6% (95% 
CI: 87.5–97.3%), 94.9% (95% CI: 89.7–97.4%), and 
88.9% (95% CI: 80.0–91.1%), respectively. The overall 
success rate of the ANN for predicting QoL was 92.4%, 
and the success rates of the training, validation, and test 
sets were 91.9% (95% CI: 83.7–96.2%), 94.3% (95% CI: 
80.0–97.1%), and 92.1% (95% CI: 81.6–97.4%), respec-
tively. The accuracy of the test set was consistent with 
that of the training and validation sets, indicating neg-
ligible overfitting. Notably, the test set was not available 
during the learning process until the final evaluation 
of success rate. This demonstrated that the constructed 
ANNs could prospectively predict the discomfort level 
of new patients with clinical features of the treatment 
plan.

Predictors and their influence on patient experience
The contributions of the inputs to the output target 

were analyzed using the partial derivatives method. The 
results of the contribution of the inputs to each ANN 
are illustrated in Table 4, and the total contributions are 
ranked in order, as shown in Figure 3. The number of 
teeth with lingual attachments was the most important 
factor affecting the outcome of negative experiences, 
followed by the number of lingual buttons and the 
number of upper incisors with attachments. Wearing the 
first pair of aligners and bonding attachments simulta-
neously or separately had a minimal impact on overall 
patient experience. The treatment stage was a negligible 
feature in predicting pain, had a mild impact on anxiety, 
and had a moderate impact on QoL. This means that the 
treatment stage has a variable impact on the patient ex-
perience.

DISCUSSION

To the best of our knowledge, this study is the first 
to construct ANNs to predict patient experience of In-
visalign treatment. A patient’s treatment experience is 
clinically important. In general, although orthodontists 
might mainly consider the treatment outcome, they are 

Table 4. Contributions of the 17 inputs for target prediction

Input categories
Contribution 

Pain Anxiety Quality of life

Number of teeth with lingual attachments 30.495 (3.164, 64.621) 13.557 (3.018, 33.124) 414.976 (190.285, 684.003)

Number of lingual buttons 6.139 (1.226, 12.541) 263.655 (145.051, 419.175) 71.548 (28.348, 131.841)

Number of upper incisors with attachments 0.462 (0.068, 4.223) 8.710 (3.520, 15.665) 127.323 (53.239, 223.390)

Crowding (mm) 0.173 (0.004, 1.253) 40.256 (20.196, 66.327) 44.515 (11.818, 84.555)

Amount of interproximal reduction (mm) 0.670 (0.113, 2.692) 39.468 (16.395, 64.707) 0.942 (0.080, 4.211)

Treatment stage 1.451 (0.216, 5.189) 9.740 (5.509, 16.898) 28.250 (13.301, 50.561)

With/without precision cut 3.495 (0.615, 9.066) 32.480 (16.052, 51.128) 1.266 (0.084, 5.304)

Age (yr) 9.140 (1.622, 19.141) 0.904 (0.078, 3.351) 25.386 (10.694, 42.722)

With/without interproximal reduction 1.680 (0.300, 7.595) 2.0378 (0.161, 5.573) 27.993 (9.141, 69.337)

Number of teeth with optimized 
   attachments

17.884 (5.501, 42.235) 9.216 (5.308, 17.528) 4.456 (0.872, 12.977)

With/without elastics 0.937 (0.160, 3.142) 14.724 (7.662, 23.509) 13.357 (5.600, 27.314)

Number of extractions 23.077 (7.160, 48.523) 2.976 (0.518, 8.308) 0.827 (0.084, 4.143)

With/without extraction 15.276 (5.932, 38.595) 0.204 (0.020, 1.557) 3.132 (0.441, 8.072)

Number of teeth with attachments 6.380 (1.382, 16.947) 0.544 (0.035, 2.550) 10.554 (3.485, 24.553)

With/without molar distalization 0.962 (0.355, 3.817) 0.925 (0.158, 3.657) 7.119 (1.743, 15.734)

Number of elastics 1.334 (0.198, 5.679) 0.224 (0.039, 1.006) 6.383 (1.064, 20.720)

Wearing aligners and bonding 
   attachments simultaneously or separately

0.594 (0.063, 2.863) 2.012 (0.418, 5.371) 0.996 (0.054, 4.459)

Data are presented as the median (95% confidence interval).
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not particularly clear about the impact of appliance 
designs on patient comfort. Patient experience and re-
sponses to different designs of orthodontic appliances 
are complicated, and thus evaluating by experience 
alone could be inaccurate. Aligner designs have a non-
linear relationship (e.g., extraction always requires elas-
tics and precision cuts); as such, it is difficult to measure 
using traditional multiparameter linear models, such as 
correlation analysis and logistic regression. AI can be 
used to investigate the nonlinear relationships in a high-
dimensional dataset and determine the potential role of 
each feature on patient comfort. 

AI systems developed for predicting patient comfort 
has potential to enhance patient compliance. If a high 
risk of discomfort is predicted, orthodontists can avoid 
or delay the use of uncomfortable accessories that do 
not affect treatment outcomes. Importantly, a compre-
hensive explanation of possible discomfort and timely 
follow-up are recommended, with medical advice such 
as replacing aligners less frequently (2/3-week per pair), 
less wearing time (12-hour per day), and planning more 
appointments or telephone calls in the early stage of 
treatment.29,30 Advance patient preparation ensures bet-
ter patient-specific outcomes in orthodontic treatment.

The ANNs achieved comparable prediction accuracies 
to those presented in the literature.31 For example, a 
convolutional neural network that was incorporated into 
a one-step, end-to-end diagnostic system to diagnose 
skeletal classification with lateral cephalograms achieved 
a prediction accuracy between 89% and 96%.32 A 23-
13-1 back propagation ANN constructed to determine 
the need for dental extractions prior to orthodontic 
treatment achieved a success rate of 80% and identi-
fied two contributing indices that should be first con-
sidered.15 A neural network machine learning for the 
diagnosis of extraction patterns achieved an accuracy 
of 84%.17 With respect to the predictive performance of 
the ANNs for pain, anxiety, and QoL, the success rates 

were 87.7%, 93.4%, and 92.4%, respectively, indicating 
satisfactory performance. To further improve accuracy, 
we could increase the training and evaluation sets and 
collect more diagnostic features that may be related 
to patient experience. A larger sample size will create 
a more sophisticated model structure (e.g., more layers 
and nodes) with better performance.

The current study found the number of teeth with 
lingual attachments and buttons as the most important 
factor affecting negative experiences. One explanation is 
that these lingual devices could aggravate the irritation 
of the mucosa and tongue during treatment. The same 
is true about the attachments on upper incisors, which 
compromise dental esthetics during treatment.33 Age 
and crowding were found to influence QoL, and they 
have been previously reported during fixed appliance 
treatment.34,35 Patient experience at the different stages 
of Invisalign treatment (i.e., the initial treatment or re-
finement) is poorly understood. The present study found 
that the treatment stage was a negligible feature for 
predicting pain and had a minimal impact on anxiety, 
while it had a moderate impact on QoL. The influencing 
factors of patient experience found in the current study 
can guide orthodontists to closely monitor patients with 
high-ranking designs and provide earlier care.

Sex was not included as an input feature in the pres-
ent study. Although the majority of patients were fe-
male, consistent with the real-world setting, we did not 
deliberately change the existing sex distribution in the 
recruitment process. In addition, there is generally no 
difference in QoL between male and female.34 Many 
studies on ANNs have combined male and female pa-
tients in their analysis.15,17,23 

This study had some limitations. First, the dataset was 
relatively small for an ANN analysis, and scores fluctuat-
ed minimally around the baseline. Thus, the model may 
have had limited training intensity. However, the test set 
had consistent accuracy with that of the training and 

Figure 3. Total contribution of the 17 input features in descending order.
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validation sets, indicating negligible overfitting. Further-
more, substantial efforts have been made to enhance 
the predictive performance. Random dropout, cross-
validation, and Adam optimizer reduced overfitting and 
increased the learning efficiency of the ANNs, thus com-
pensating for the relatively small sample size.17 Another 
limitation is that the comfort level of wearing clear 
aligners was relatively subjective as it was self-reported 
and influenced by multiple factors. However, we defined 
the difference between the highest and lowest scores as 
the output, reducing the impact of subjective variability. 
In the future, we will consider involving objective mea-
sures, such as physical and laboratory examinations, to 
evaluate patient experience. The ANN models would be 
further stabilized with more clinical data. 

CONCLUSIONS

The three constructed ANNs demonstrate good success 
rates in predicting pain (87.7%), anxiety (93.4%), and 
QoL (92.4%) during Invisalign treatment. The number 
of teeth with lingual attachments is the most important 
influencing factor of negative experiences, followed by 
the number of lingual buttons and the number of up-
per incisors with attachments. AI systems developed for 
predicting patient comfort has potential for clinical ap-
plication to enhance patient compliance. 
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