• Title/Summary/Keyword: neural network.

Search Result 11,766, Processing Time 0.034 seconds

Implementation of the Controller for intelligent Process System Using Neural Network (신경회로망을 이용한 지능형 가공 시스템 제어기 구현)

  • Son, Chang-U;kim, Gwan-Hyeong;Kim, Il;Tak, Han-Ho;Lee, Sang-Bae
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2000.11a
    • /
    • pp.376-379
    • /
    • 2000
  • In this paper, this system makes use of the analog infrered rays sensor and converts the feature of fish analog signal when sensor is operating with CPU(80C196KC). Then, After signal processing, this feature is classified a special feature and a outline of fish by using the neural network, one of the artificial intelligence scheme. This neural network classifies fish pattern of very simple and short calculation. This has linear activation function and the error backpropagation is used as a learning algorithm. And the neural network is learned in off-line process. Because an adaptation period of neural network is too long time when random initial weights are used, off-line learning is induced to decrease the progress time. We confirmed this method has better performance than somewhat outdated machines.

  • PDF

Modeling and designing intelligent adaptive sliding mode controller for an Eight-Rotor MAV

  • Chen, Xiang-Jian;Li, Di
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.14 no.2
    • /
    • pp.172-182
    • /
    • 2013
  • This paper focuses on the modeling and intelligent control of the new Eight-Rotor MAV, which is used to solve the problem of the low coefficient proportion between lift and gravity for the Quadrotor MAV. The Eight-Rotor MAV is a nonlinear plant, so that it is difficult to obtain stable control, due to uncertainties. The purpose of this paper is to propose a robust, stable attitude control strategy for the Eight-Rotor MAV, to accommodate system uncertainties, variations, and external disturbances. First, an interval type-II fuzzy neural network is employed to approximate the nonlinearity function and uncertainty functions in the dynamic model of the Eight-Rotor MAV. Then, the parameters of the interval type-II fuzzy neural network and gain of sliding mode control can be tuned on-line by adaptive laws based on the Lyapunov synthesis approach, and the Lyapunov stability theorem has been used to testify the asymptotic stability of the closed-loop system. The validity of the proposed control method has been verified in the Eight-Rotor MAV through real-time experiments. The experimental results show that the performance of the interval type-II fuzzy neural network based adaptive sliding mode controller could guarantee the Eight-Rotor MAV control system good performances under uncertainties, variations, and external disturbances. This controller is significantly improved, compared with the conventional adaptive sliding mode controller, and the type-I fuzzy neural network based sliding mode controller.

Development of Classification System for Thermal Comfort Behavior of Pigs by Image Processing and Neural Network (영상처리와 인공신경망을 이용한 돼지의 체온조절행동 분류 시스템 개발)

  • 장동일;임영일;장홍희
    • Journal of Biosystems Engineering
    • /
    • v.24 no.5
    • /
    • pp.431-438
    • /
    • 1999
  • The environmental control based on interactive thermoregulatory behavior for swine production has many advantages over the conventional temperature-based control methods. Therefore, this study was conducted to compare various feature selection methods using postural images of growing pigs under various environmental conditions. A color CCD camera was used to capture the behavioral images which were then modified to binary images. The binary images were processed by thresholding, edge detection, and thinning techniques to separate the pigs from their background. Following feature were used for the input patterns to the neural network ; \circled1 perimeter, \circled2 area, \circled3 Fourier coefficients (5$\times$5), \circled4 combination of (\circled1 + \circled2), \circled5 combination of (\circled1 + \circled3), \circled6 combination of (\circled2 + \circled3), and \circled7 combination of (\circled1 + \circled2 + \circled3). Using the above each input pattern, the neural network could classify training images with the success rates of 96%, 96%, 96%, 100%, 100%, 96%, 100%, and testing images with those of 88%, 86%, 93%, 96%, 91%, 90%, 98%, respectively. Thus, the combination of perimeter, area and Fourier coefficients of the thinning images as neural network features gave the best performance (98%) in the behavioral classification.

  • PDF

Design of Fuzzy Relation-based Fuzzy Neural Networks with Multi-Output and Its Optimization (다중 출력을 가지는 퍼지 관계 기반 퍼지뉴럴네트워크 설계 및 최적화)

  • Park, Keon-Jun;Kim, Hyun-Ki;Oh, Sung-Kwun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.4
    • /
    • pp.832-839
    • /
    • 2009
  • In this paper, we introduce an design of fuzzy relation-based fuzzy neural networks with multi-output. Fuzzy relation-based fuzzy neural networks comprise the network structure generated by dividing the entire input space. The premise part of the fuzzy rules of the network reflects the relation of the division space for the entire input space and the consequent part of the fuzzy rules expresses three types of polynomial functions such as constant, linear, and modified quadratic. For the multi-output structure the neurons in the output layer were connected with connection weights. The learning of fuzzy neural networks is realized by adjusting connections of the neurons both in the consequent part of the fuzzy rules and in the output layer, and it follows a back-propagation algorithm. In addition, in order to optimize the network, the parameters of the network such as apexes of membership functions, learning rate and momentum coefficient are automatically optimized by using real-coded genetic algorithm. Two examples are included to evaluate the performance of the proposed network.

Speaker Recognition using LPC cepstrum Coefficients and Neural Network (LPC 켑스트럼 계수와 신경회로망을 사용한 화자인식)

  • Choi, Jae-Seung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.12
    • /
    • pp.2521-2526
    • /
    • 2011
  • This paper proposes a speaker recognition algorithm using a perceptron neural network and LPC (Linear Predictive Coding) cepstrum coefficients. The proposed algorithm first detects the voiced sections at each frame. Then, the LPC cepstrum coefficients which have speaker characteristics are obtained by the linear predictive analysis for the detected voiced sections. To classify the obtained LPC cepstrum coefficients, a neural network is trained using the LPC cepstrum coefficients. In this experiment, the performance of the proposed algorithm was evaluated using the speech recognition rates based on the LPC cepstrum coefficients and the neural network.

Clustering In Tied Mixture HMM Using Homogeneous Centroid Neural Network (Homogeneous Centroid Neural Network에 의한 Tied Mixture HMM의 군집화)

  • Park Dong-Chul;Kim Woo-Sung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.9C
    • /
    • pp.853-858
    • /
    • 2006
  • TMHMM(Tied Mixture Hidden Markov Model) is an important approach to reduce the number of free parameters in speech recognition. However, this model suffers from a degradation in recognition accuracy due to its GPDF (Gaussian Probability Density Function) clustering error. This paper proposes a clustering algorithm, called HCNN(Homogeneous Centroid Neural network), to cluster acoustic feature vectors in TMHMM. Moreover, the HCNN uses the heterogeneous distance measure to allocate more code vectors in the heterogeneous areas where probability densities of different states overlap each other. When applied to Korean digit isolated word recognition, the HCNN reduces the error rate by 9.39% over CNN clustering, and 14.63% over the traditional K-means clustering.

Feature Selecting and Classifying Integrated Neural Network Algorithm for Multi-variate Classification (다변량 데이터의 분류 성능 향상을 위한 특질 추출 및 분류 기법을 통합한 신경망 알고리즘)

  • Yoon, Hyun-Soo;Baek, Jun-Geol
    • IE interfaces
    • /
    • v.24 no.2
    • /
    • pp.97-104
    • /
    • 2011
  • Research for multi-variate classification has been studied through two kinds of procedures which are feature selection and classification. Feature Selection techniques have been applied to select important features and the other one has improved classification performances through classifier applications. In general, each technique has been independently studied, however consideration of the interaction between both procedures has not been widely explored which leads to a degraded performance. In this paper, through integrating these two procedures, classification performance can be improved. The proposed model takes advantage of KBANN (Knowledge-Based Artificial Neural Network) which uses prior knowledge to learn NN (Neural Network) as training information. Each NN learns characteristics of the Feature Selection and Classification techniques as training sets. The integrated NN can be learned again to modify features appropriately and enhance classification performance. This innovative technique is called ALBNN (Algorithm Learning-Based Neural Network). The experiments' results show improved performance in various classification problems.

Optimal Reheating Condition of Semi-solid Material in Semi-solid Forging by Neural Network

  • Park, Jae-Chan;Kim, Young-Ho;Park, Joon-Hong
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.4 no.2
    • /
    • pp.49-56
    • /
    • 2003
  • As semi-solid forging (SSF) is compared with conventional casting such as gravity die-casting and squeeze casting, the product without inner defects can be obtained from semi-solid forming and globular microstructure as well. Generally, SSF consists of reheating, forging, and ejecting processes. In the reheating process, the materials are heated up to the temperature between the solidus and liquidus line at which the materials exists in the form of liquid-solid mixture. The process variables such as reheating time, reheating temperature, reheating holding time, and induction heating power has large effect on the quality of the reheated billets. It is difficult to consider all the variables at the same time for predicting the quality. In this paper, Taguchi method, regression analysis and neural network were applied to analyze the relationship between processing conditions and solid fraction. A356 alloy was used for the present study, and the learning data were extracted from the reheating experiments. Results by neural network were in good agreement with those by experiment. Polynominal regression analysis was formulated using the test data from neural network. Optimum processing condition was calculated to minimize the grain size and solid fraction standard deviation or to maximize the specimen temperature average. Discussion is given about reheating process of row material and results are presented with regard to accurate process variables fur proper solid fraction, specimen temperature and grain size.

Prediction of Chip Forms using Neural Network and Experimental Design Method (신경회로망과 실험계획법을 이용한 칩형상 예측)

  • 한성종;최진필;이상조
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.11
    • /
    • pp.64-70
    • /
    • 2003
  • This paper suggests a systematic methodology to predict chip forms using the experimental design technique and the neural network. Significant factors determined with ANOVA analysis are used as input variables of the neural network back-propagation algorithm. It has been shown that cutting conditions and cutting tool shapes have distinct effects on the chip forms, so chip breaking. Cutting tools are represented using the Z-map method, which differs from existing methods using some chip breaker parameters. After training the neural network with selected input variables, chip forms are predicted and compared with original chip forms obtained from experiments under same input conditions, showing that chip forms are same at all conditions. To verify the suggested model, one tool not used in training the model is chosen and input to the model. Under various cutting conditions, predicted chip forms agree well with those obtained from cutting experiments. The suggested method could reduce the cost and time significantly in designing cutting tools as well as replacing the“trial-and-error”design method.

Neural-network-based Fault Detection and Diagnosis Method Using EIV(errors-in variables) (EIV를 이용한 신경회로망 기반 고장진단 방법)

  • Han, Hyung-Seob;Cho, Sang-Jin;Chong, Ui-Pil
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.11
    • /
    • pp.1020-1028
    • /
    • 2011
  • As rotating machines play an important role in industrial applications such as aeronautical, naval and automotive industries, many researchers have developed various condition monitoring system and fault diagnosis system by applying artificial neural network. Since using obtained signals without preprocessing as inputs of neural network can decrease performance of fault classification, it is very important to extract significant features of captured signals and to apply suitable features into diagnosis system according to the kinds of obtained signals. Therefore, this paper proposes a neural-network-based fault diagnosis system using AR coefficients as feature vectors by LPC(linear predictive coding) and EIV(errors-in variables) analysis. We extracted feature vectors from sound, vibration and current faulty signals and evaluated the suitability of feature vectors depending on the classification results and training error rates by changing AR order and adding noise. From experimental results, we conclude that classification results using feature vectors by EIV analysis indicate more than 90 % stably for less than 10 orders and noise effect comparing to LPC.