• Title/Summary/Keyword: neural network.

Search Result 11,766, Processing Time 0.04 seconds

Optimal Structure of Wavelet Neural Network Systems using Genetic Algorithm (유전 알고리즘 이용한 웨이블릿 신경회로망의 최적 구조 설계)

  • 이창민;서재용;진홍태
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.10 no.4
    • /
    • pp.338-342
    • /
    • 2000
  • In order to approximate a nonlinear function, wacelet neural networks combining wacelet theory and neural networks have been proposed as an alternative to conventional multi-layered neural networks. wacelet neural networks provide better approximating performance than conventional neural networks. In this paper, an effective method to construct an optimal wavelet neural network is proposed using genetic alogorithm. Genetic Algorithm is used to determine dilationa and translations of wavelet basic functions of wavelet neural networks. Then, these determined dilations dilations and translations, wavelet neural networks are funther trained by back propagation learning algorithm. The effectiveness of the final network is verified thrifigh the approximation result of a nonlinear function and comparison with conventional neural networks.

  • PDF

A Study on the Neural Network Diagnostic System for Rotating Machinery Failure Diagnosis (신경망을 이용한 회전축의 이상상태 진단에 관한 연구)

  • 유송민;박상신
    • Tribology and Lubricants
    • /
    • v.16 no.6
    • /
    • pp.461-468
    • /
    • 2000
  • In this study, a neural network based diagnostic system of a rotating spindle system supported by ball bearings was introduced. In order to create actual failure situations, two exemplary abnormal status were made. Out of several possible data source locations, ten measurement spots were chosen. In order to discriminate multiple abnormal status, a neural network system was introduced using back propagation algorithm updating connecting weight between each nodes. In order to find the optimal structure of the neural network system reducing the information sources, magnitude of the weight of the network was referred. Hinton diagram was used to visually inspect the least sensitive weight connecting between input and hidden layers. Number of input node was reduced from 10 to 7 and prediction rate was increased to 100%.

Adaptive Structure of Modular Wavelet Neural Network (모듈화된 웨이블렛 신경망의 적응 구조)

  • 서재용;김용택;김성현;조현찬;전홍태
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2001.12a
    • /
    • pp.247-250
    • /
    • 2001
  • In this paper, we propose an growing and pruning algorithm to design the adaptive structure of modular wavelet neural network(MWNN) with F-projection and geometric growing criterion. Geometric growing criterion consists of estimated error criterion considering local error and angle criterion which attempts to assign wavelet function that is nearly orthogonal to all other existing wavelet functions. These criteria provide a methodology that a network designer can constructs wavelet neural network according to one's intention. The proposed growing algorithm grows the module and the size of modules. Also, the pruning algorithm eliminates unnecessary node of module or module from constructed MWNN to overcome the problem due to localized characteristic of wavelet neural network which is used to modules of MWNN. We apply the proposed constructing algorithm of the adaptive structure of MWNN to approximation problems of 1-D function and 2-D function, and evaluate the effectiveness of the proposed algorithm.

  • PDF

The Prediction of Geometrical Configuration and Ductile Fracture Using the Artificial Neural network for a Cold Forged Product (신경망을 이용한 냉간 단조품의 기하학적 형상 및 연성파괴 예측)

  • Kim, D.J.;Ko, D.C.;Park, J.C.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.10
    • /
    • pp.105-111
    • /
    • 1996
  • This paper suggests the scheme to simultaneously accomplish prediction of fracture initiation and geomeytical configuration of deformation in metal forming processes using the artificial neural network. A three-layer neural network is used and a back propagation algorithm is adapted to train the network. The Cookcroft-Lathjam criterion is used to estimate whether fracture occurs during the deformation process. The geometrical configuration and the value of ductile fracture are measured by finite element method. The predictions of neural network and numerical results of simple upsetting are compared. The proposed scheme has successfully predicted the geometrical configuration and fracture initiation.

  • PDF

Visual servo control of robots using fuzzy-neural-network (퍼지신경망을 이용한 로보트의 비쥬얼서보제어)

  • 서은택;정진현
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1994.10a
    • /
    • pp.566-571
    • /
    • 1994
  • This paper presents in image-based visual servo control scheme for tracking a workpiece with a hand-eye coordinated robotic system using the fuzzy-neural-network. The goal is to control the relative position and orientation between the end-effector and a moving workpiece using a single camera mounted on the end-effector of robot manipulator. We developed a fuzzy-neural-network that consists of a network-model fuzzy system and supervised learning rules. Fuzzy-neural-network is applied to approximate the nonlinear mapping which transforms the features and theire change into the desired camera motion. In addition a control strategy for real-time relative motion control based on this approximation is presented. Computer simulation results are illustrated to show the effectiveness of the fuzzy-neural-network method for visual servoing of robot manipulator.

  • PDF

Identification and Control of Nonlinear Systems Using Haar Wavelet Networks

  • Sokho Chang;Lee, Seok-Won;Nam, Boo-Hee
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.2 no.3
    • /
    • pp.169-174
    • /
    • 2000
  • In this paper, Haar wavelet-based neural network is described for the identification and control of discrete-time nonlinear dynamical systems. Wavelets are suited to depict functions with local nonlinearities and fast variations because of their intrinsic properties of finite support and self-similarity. Due to the orthonormal properties of Haar wavelet functions, wavelet neural networks result in a greatly simplified training problem. This wavelet-based scheme performs adaptively both the identification of nonlinear functions and the control of the overall system, while the multilayer neural network is applied to the control system just after its sufficient learning of the unknown functions. Simulation shows that the wavelet network can be a good alternative to a multilayer neural network with backpropagation.

  • PDF

Wavelet Neural Network Based Generalized Predictive Control of Chaotic Systems Using EKF Training Algorithm

  • Kim, Kyung-Ju;Park, Jin-Bae;Choi, Yoon-Ho
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.2521-2525
    • /
    • 2005
  • In this paper, we presented a predictive control technique, which is based on wavelet neural network (WNN), for the control of chaotic systems whose precise mathematical models are not available. The WNN is motivated by both the multilayer feedforward neural network definition and wavelet decomposition. The wavelet theory improves the convergence of neural network. In order to design predictive controller effectively, the WNN is used as the predictor whose parameters are tuned by error between the output of actual plant and the output of WNN. Also the training method for the finding a good WNN model is the Extended Kalman algorithm which updates network parameters to converge to the reference signal during a few iterations. The benefit of EKF training method is that the WNN model can have better accuracy for the unknown plant. Finally, through computer simulations, we confirmed the performance of the proposed control method.

  • PDF

Moving Target Detection by using the Diffusion Neural Network (확산 신경 회로망을 이용한 움직이는 표적의 검출)

  • Choi, Tae-Wan;Kwon, Yool;Kim, Jae-Chang;Nam, Ki-Gon;Yoon, Tae-Hoon
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.32B no.1
    • /
    • pp.120-126
    • /
    • 1995
  • The diffusion neural network can be cfficiently applied to the Gaussian processing. For example, a difference of two Gaussians(DOG) is performed by this network with ease. In this paper, we model a neural network to perform the function /t(.del.${\Delta}^{2}$G) by using the diffusion neural network. This model is used to detect the edges of moving target in image. By this model not only moving target is separated from stationary background but also their trajectories are obtained using accumulated past information in the diffusion neural network. Furthermore this model needs a small number of connections per cell and the connection weights are fixed-valued. Therefore its hardware can be easily implemented with simple structure.

  • PDF

Multiple Fault Diagnosis Method by Modular Artificial Neural Network (모듈신경망을 이용한 다중고장 진단기법)

  • 배용환;이석희
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.2
    • /
    • pp.35-44
    • /
    • 1998
  • This paper describes multiple fault diagnosis method in complex system with hierarchical structure. Complex system is divided into subsystem, item and component. For diagnosing this hierarchical complex system, it is necessary to implement special neural network. We introduced Modular Artificial Neural Network(MANN) for this purpose. MANN consists of four level neural network, first level for symptom classification, second level for item fault diagnosis, third level for component symptom classification, forth level for component fault diagnosis. Each network is multi layer perceptron with 7 inputs, 30 hidden node and 7 outputs trained by backpropagation. UNIX IPC(Inter Process Communication) is used for implementing MANN with multitasking and message transfer between processes in SUN workstation. We tested MANN in reactor system.

  • PDF

Signal processing of multichannel FET type electrolyte sensors using neural network (신경회로망을 이용한 다중채널 FET형 전해질 센서의 신호처리)

  • 이정민;이창수;손병기;이은석;이흥락
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.34S no.11
    • /
    • pp.148-155
    • /
    • 1997
  • Ths signal processing technqiue of FET type electrolyte sensors using the back propagation neural network was studied to reduce the interference effects of the different electrolytes. The FET-type electrolyte sensors, pH-ISFET, K-ISFET, and Ca-ISFET, were prepared to measure the pH, K, and Ca electrolytes. Neural network consisted of three layers was learned with 8 patterns and 9 patterns. The sensor output obtained with arbitrary concentrations was processed by the learned neural network. The errors obtained from calibration curve for pH, K, and Ca were .+-.0.039 pH, .+-.2.508 mmol/l, and .+-.1.807 mmol/l, respectively, without considering the interference effects. The errors of the network output for pH, K, and Ca were reduced to .+-.0.005 pH, .+-.0.436 mmol/l, and .+-.0.381 mmol/l in case of 9 patterns, respectively. the signal processing using the neural network can reduce the errors ofthe electrolyte sensor outputs caused by the interference effect, thereby providing effectiveness in the improvement of the sensor selectivity.

  • PDF