
1. Introduction 
 
The study of chaos has led to many interesting over the past 

few decades, and many research results are published. A 
nonlinear dynamical system with a chaotic feature produces 
motion on the attractor that has random-like properties. Due to 
unpredictability and irregularity, the chaotic phenomena lead 
systems to be unstable or performance-degraded situations. 
In 1990, Ott et al. proposed the so-called OGY method, by 

which the chaotic phenomenon of a dynamical system can be 
stabilized by a small perturbation of an accessible system 
parameter when the chaotic orbit approaches a periodic orbit 
near a saddle point. Since then, a number of successful control 
methods and techniques for controlling chaotic systems have 
been developed [1-4]. Among these chaos control techniques, 
the conventional control techniques such as optimal controls, 
adaptive controls and robust controls were also introduced to 
control chaotic systems, and these kinds of techniques have 
been shown effective [5, 6]. Notice, however, that most of 
these techniques can be applied to control chaotic systems 
only when the exact (or, at least, a good approximate) 
mathematical model of the chaotic system is available. To 
overcome this shortage, predictive control methods, which 
may be considered as a kind of adaptive control strategy, are 
suggested for controlling unknown chaotic systems. For 
example, Park et al. presented a generalized predictive control 
method based on an ARMAX model for chaos control for 
discrete-time systems [7]. 
In the meanwhile, the neural network (NN) has been used to 

control nonlinear and chaotic systems, because no 
mathematical models are needed. But the NN has defects, 
which come from their inherent characteristics, such as slow 
convergence, complex calculation. Accordingly, the wavelet 
neural network (WNN), which has the advantages of high 
resolution of wavelets, has been proposed to guarantee the fast 

convergence [8].  
Generally, the performance of control method, which uses 

the universal approximator, depends on the accuracy of 
approximator. Therefore we need superior training algorithm 
of network for better performance. Usually, the gradient 
descent (GD) method is used to train the network parameter 
for networks (NN and WNN, etc.), but GD method has some 
drawback, such as local minima problem. Another training 
method, genetic algorithm (GA), which is the intelligent 
method with needless mathematical calculation, has a long 
training time. To overcome this problem, we use the Extended 
Kalman Filter (EFK) training method [9] which updates 
network parameters to converge during a few iterations. The 
benefit of EKF training method is that the WNN model can 
have better accuracy for the unknown plant. 
In this paper, we propose a predictive control technique, 

which is based on WNN, for the control of chaotic systems 
whose precise mathematical models are not available. In our 
method, the WNN is used as the universal approximator of the 
chaotic plant (Duffing) and the model is made by on-line and 
off-line identification (ID). We apply the EKF training method 
to making good WNN ID model  
In our predictive controller using the WNN model is 

developed in such a way that the parameters of the predictive 
controller are adjusted by using the gradient descent scheme 
[10], where the difference between the actual output and the 
reference signal is used as control input. 
This paper is organized as follows: In Section 2, we present 

some basics of the WNN and the EKF training method. 
Section 3 discusses the WNN based GPC strategy. Section 4 
presents a simulation result. Finally, Section 5 gives some 
concluding remarks. 

 
2. Wavelet Neural Network 
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2.1 WNN structure  
A schematic diagram of the proposed WNN structure is 

shown in Fig. 1, which has Ni  inputs, Nw  wavelet nodes 
and one output. The WNN structure consists of three layers. 
The layer 1 is an input node layer. This layer accepts the 

input variables and transmits the accepted inputs to the next 
layer directly. The layer 2 is a wavelet node layer. Each node 
of this layer has a mother wavelet and its output is the product 
of the mother wavelets. The layer 3 is the output layer. The 
node of output is a linear combination of consequences 
obtained from the weighted output of the layer 2 and weighted 
input of the layer 1. 
In this paper, we select the first derivative of a Gaussian 

function as a mother wavelet function: 

( ) 21exp
2jk jk jkz z zϕ ⎛ ⎞= − −⎜ ⎟

⎝ ⎠
.   (1) 

The output of each wavelet node, ( )jφ X , is derived from its 

mother wavelet ( )jkzϕ  as follows: 
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where kx  denotes the input of the WNN, and jkm , jkd  are 

translation and dilation parameters of the WNN, respectively. 
The subscript jk indicates the k th input term of the j th 
wavelet. 
And the output of WNN is 
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where ka  is the weight between input and output layers and 

the jc is the weight between wavelet layer and output layer. 
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Fig. 1 The WNN structure. 

 
2.2 EKF training method 
In order to apply the EKF training algorithm, we let the 

weights in the network represent the state θ  of the nonlinear 
system as the weight vector, i.e. 

[ ]1 1 11 11, , , , , , , , , , , .T
Ni Nw NwNi NwNia a c c m m d d=θ  (4) 

The vector θ  contains the all weight of WNN, and its 
dimension equal to the total number of weights in the WNN. 
Thus, the system model is 

1 , 2n n n nω+ = + >θ θ ,   (5) 
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where the variable nω , nυ  are the degree of updating state 

and the degree of measurement residual, respectively. They 
are assumed to be independent of each other and with the 
following normal probability distributions: 

( ) ~ (0, )n np N Qω ,    (7) 

( ) ~ (0, )n np N Rυ .    (8) 

Applying the EKF to Eqs. (5) and (6), then we obtain Eqs. 
(9)~(11) as follows: 

1T
n n n n n n nK P H R H P H

−
⎡ ⎤= +⎣ ⎦ ,   (9) 

1n n n nK ξ+ = +θ θ ,    (10) 

1
T

n n n n n nP P K H P Q+ = − + .   (11)  

The error vector is ˆn n ny yξ = − , where ny  is the target 

vector and ˆny  is the output vector of WNN for the nth 

presentation of a training procedure. The kH in Eq. (12) is a 

matrix of derivatives of the WNN’s output with respect to all 
trainable weight parameters. The error covariance matrix nP  

evolves recursively with the weight vector estimate. 
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where 1,2, , , 1,2, ,k Ni j Nw= = , '( )jkzϕ  means the 

derivative of the mother wavelet with respect to jkz , that is 

2 21'( ) ( 1)exp
2jk jk jkz z zϕ ⎛ ⎞= − −⎜ ⎟

⎝ ⎠
.  (18) 

The time index n  of Eqs. (12)-(17) is omitted for 
simplicity. 
 The EKF training algorithm repeats Eqs. (9)-(11) for 

updating the weight of the WNN. Before the update process, 
the error covariance matrix nP  must be initialized at the 

beginning of training. 
 

3. Generalized Predictive Control 
 

In design of GPC, the WNN are applied for the control of 
chaotic systems. In most applications of model predictive 
techniques, a linear model is used to predict the process 
behavior over the prediction horizon [11]. And some works 
were done to extend predictive control techniques to 
incorporate nonlinear models [12]. The most expensive part of 
the realization of a nonlinear predictive control scheme is the 
derivation of the mathematical model. But in many cases, it is 
even impossible. So in our method, the derivation may be 
derived from WNN ID model of the plant. 
The block diagram of control system is shown in Fig. 2, 

where the WNN is used as the ID model. 
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Fig. 2 Block diagram of control system. 

Our purpose of control is to select optimal control signal 
u in order to minimize the control performance function 

, ,
1
2

T
q n q nJ E E⎡ ⎤= ⎣ ⎦ ,    (19) 

where ,q nE  is the predicted control error defined by  

, 1 2

T

q n n n n qE e e e+ + +⎡ ⎤= ⎣ ⎦ ,  (20) 

1 1 1ˆn n ne yd y+ + += − .    (21) 

Here, 1nyd +  and 1ˆny +  are the desired output signal and the 

WNN output signal, respectively. It can be seen that the 
controller is effected by the approximation performance of 
WNN. Therefore, it is necessary that 1ˆny +  converges to the 

real system output 1ny +  asymptotically. This convergence 

can be guaranteed via the on-line training of the WNN. 
We define the following vectors: 

, 1 2

T

q n n n n qR yd yd yd+ + +⎡ ⎤= ⎣ ⎦ ,   (22) 

, 1 2
ˆ ˆ ˆ ˆ
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, 1 1

T

q n n n n qU u u u+ + −⎡ ⎤= ⎣ ⎦ .  (24) 

where q is the prediction horizon. 

The purpose of the control is to find ,q nU  such that J  is 

minimized. Using the gradient projection method, the control 
input U  is updated by each iteration [13]: 
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where, ,q nP denoted by the projection matrix, is an q q×   

diagonal matrix with unity initial value 
0, 1q nP = , and ,q nΓ  is 

the gradient of the output of the WNN with respect to ,q nU , 

which can be derived from the WNN model and can be easily 
evaluated. 
If the predictive horizon is 3, ,q nΓ  is as follows: 
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Each individual element of the control sequence is updated 
by clipping the results obtained from Eq. (25) according to  

( 1)u u n i u∆ ≤ ∆ + − ≤ ∆ ,     

where ( 1) ( 1) ( 2)u n i u n i u n i∆ + − = + − − + − and each u∆  

and u∆  can be heuristically chosen to be some very small 
values. 
 The projection matrix ,q nP  is then updated according to 

,q nU  at each iteration, by 

,
, 1

0 ( 1)
, 1,2, , .

( , )q n
q n

if u u n i u
P i q

P i i otherwise−

⎧ ∆ ≤ ∆ + − ≤ ∆⎪= =⎨
⎪⎩

   (24) 

Finally, the first element of ,q nU , which is the new control 

sequence is applied to the system as the control signal. 
In this paper, the input of the WNN in Eq. (6) is as follows: 

[ ]1n nu+ =X . 

Therefore, Eq. (26) can be rewritten by the following 
equation: 
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4. Simulation and Result 

 
4.1 The Duffing system 
The solution to the Duffing equations is often used as an 

example of a classic chaotic system. The state equation of the 
Duffing system is 

3
1 2 cos( )

yx
p x x p y b wt uy

⎛ ⎞⎛ ⎞
= ⎜ ⎟⎜ ⎟ − − + +⎝ ⎠ ⎝ ⎠

,  (31) 

where typically, 1 1.1p = , 2 0.4p = , 1.8b = and 1.8w = . 

Duffing equation has either the periodic solution or the 
aperiodic (chaotic) solution depending on the value of b . 

 
Fig. 3 The strange attractor of Duffing system. 

 
4.2 The control of Duffing system 
 
The desired signal is solution in case that the parameter b  

of Duffing equation is chosen as 2.3. The desired signal is as 
follows: 

( )
( ) 3

( )
1.1 ( ) ( ) 0.4 ( ) 2.3cos(1.8 )

r r

r r r r

x t y t
y t x t x t y t t
⎡ ⎤ ⎡ ⎤

=⎢ ⎥ ⎢ ⎥− − +⎣ ⎦⎣ ⎦
. (32) 

Note that we can obtain the control result for Duffing system 
and the control input signal from simulation result (see Figs. 5 
and 6). Fig. 4 represents the on-line ID result of the Duffing 
system. The mean square error (MSE) for system ID and 
control performance is indicated in Table 1. 
The control input signals shown in Fig. 6 is not constant, but 

has a wave shape. This appearance is due to the cosine forcing 
term involved in the Duffing equation. 
 

Table 1 Control environment and result. 
Duffing system control 

Prediction horizon 3 
Number of wavelet node 3 
Sampling time 0.02 

On-line ID error: MSE 0.0464 

Control error: MSE 0.0915 

 
 

 
Fig. 4 The on-line ID of The Duffing system. 

 

 
Fig. 5 The control result for Duffing system. 
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Fig. 6 The control input. 

 
5. Conclusion 

 
In this paper, we have presented the design method of a 

predictive controller based on a WNN, which was used to 
perform the multi-step prediction on-line, for the intelligent 
control of chaotic systems whose mathematical models are 
unknown. 
Also we used the EKF training method for the training of 

WNN parameter. Since the WNN have the advantages of high 
resolution of wavelets, it have the fast convergence. Also the 
EKF training algorithm improved the performance of WNN. 
Finally, in order to evaluate the performance of our controller, 
the proposed method was applied to the Duffing system. The 
simulation results have shown that a WNN based predictive 
control scheme has the fast convergence property and accurate 
control performance. 
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