Abstract
In this study, a neural network based diagnostic system of a rotating spindle system supported by ball bearings was introduced. In order to create actual failure situations, two exemplary abnormal status were made. Out of several possible data source locations, ten measurement spots were chosen. In order to discriminate multiple abnormal status, a neural network system was introduced using back propagation algorithm updating connecting weight between each nodes. In order to find the optimal structure of the neural network system reducing the information sources, magnitude of the weight of the network was referred. Hinton diagram was used to visually inspect the least sensitive weight connecting between input and hidden layers. Number of input node was reduced from 10 to 7 and prediction rate was increased to 100%.