• Title/Summary/Keyword: neural network.

Search Result 11,766, Processing Time 0.052 seconds

Wild Image Object Detection using a Pretrained Convolutional Neural Network

  • Park, Sejin;Moon, Young Shik
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.3 no.6
    • /
    • pp.366-371
    • /
    • 2014
  • This paper reports a machine learning approach for image object detection. Object detection and localization in a wild image, such as a STL-10 image dataset, is very difficult to implement using the traditional computer vision method. A convolutional neural network is a good approach for such wild image object detection. This paper presents an object detection application using a convolutional neural network with pretrained feature vector. This is a very simple and well organized hierarchical object abstraction model.

Neural Network Based Image Genre Classification (Neural Network을 이용한 이미지 장르 분류 시스템)

  • Ahn, Jae-Hoon;Lee, Han-Ku;Ju, Hyun-Ho
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2006.10b
    • /
    • pp.330-335
    • /
    • 2006
  • 본 논문에서는 neural network을 이용한 이미지 장르(유형) 분류 시스템을 소개한다. 이 논문에서 제안된 시스템은 이미지를 예술(art), 사진(photo), 만화(cartoon) 이미지라는 세 가지 장르(유형) 중 하나로 분류한다. 이미지의 특성은 표준 MPEG-7 visual descriptor를 사용하여 추출된 후, neural networks를 이용하여 학습된다. 시뮬레이션 결과는 제안된 시스템이 80% 이상의 이미지들을 정확한 장르(유형)로 분류하는 것을 보여준다.

  • PDF

Mongolian Car Plate Recognition using Neural Network

  • Ragchaabazar, Bud;Kim, SooHyung;Na, In Seop
    • Smart Media Journal
    • /
    • v.2 no.4
    • /
    • pp.20-26
    • /
    • 2013
  • This paper presents an approach to Mongolian car plate recognition using artificial neural network. Our proposed method consists of two steps: detection and recognition. In detection step, we implement Flood fill algorithm. In recognition step we proceed to segment the plate for each Cyrillic character, and use an Artificial Neural Network (ANN) machine - learning algorithm to recognize the character. We have learned the theory of ANN and implemented it without using any library. A total of 150 vehicles images obtained from community entrance gates have been tested. The recognition algorithm shows an accuracy rate of 89.75%.

  • PDF

Automatic Face Recognition Using Neural Network (신경회로망에 기초한 자동얼굴인식)

  • 김재철;이민중;김현식;최영규
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.417-417
    • /
    • 2000
  • This paper proposes a face detection and recognition method that combines the template matching method and the eigenface method with the neural network. In the face extraction step, the skin color information is used. Therefore, the search region is reduced. The global property of the face is achieved by the eigenface method. Face recognition is performed by a neural network that can learn the face property.

  • PDF

Recognition of Zip-Code using Neural Network (신경 회로망을 이용한 우편번호 인식)

  • 이래경;김성신
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.365-365
    • /
    • 2000
  • In this paper, we describe the system to recognize the six digit postal number of mails using neural network. Our zip-code recognition system consists of a preprocessing procedure for the original captured image, a segmentation procedure for separating an address block area with a shape, and recognition procedure for the cognition of a postal number. we extract the feature vectors that are the input of a neural network for the recognition process based on an area optimizing and an image thinning processing. The neural network classifies the zip-code in the mail and the recognized zip-code is verified through the zip-code database.

  • PDF

Channel Equalization for QAM Signal Constellation Using Wavelet Transform and Neural Network

  • Lee, Seok-Won;Nam, Boo-Hee
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.147-147
    • /
    • 2000
  • Recently, a considerable amount of attention is being given to the use of wavelets and neural network for modulation and equalization. We proposed a new scheme of equalization for constellation using discrete wavelet transform(DWT) and neural network. The DWT is used for noise reduction and the neural network is used to update the equalizer coefficients adaptively.

  • PDF

Sliding Mode Control using Neural Network for a Robot Manipulator (로봇 매니퓰레이터를 위한 신경회로망을 이용한 간편 슬라이딩 모드 제어)

  • 박윤명;박양수;최부귀
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.355-355
    • /
    • 2000
  • The position control accuracy of a robot manipulator is significantly deteriorated when a long arm robot is operated at a high speed. This paper presents a very simple sliding mode control which eliminates multiple mode residual vibration in a 개bot manipulator. The neural network is used to avoid that sliding mode condition is deviated due to the change of system parameter and disturbance. This paper is suggested control system which designed by sliding mode controller using neural network. The effectiveness of proposed scheme is demonstrated through computer simulation.

  • PDF

The Real-Time Control of 3-Phase Induction Motor by DSP Application of Tuning Parameter Using Load Torque Observer and Neural Network (부하관측기와 신경망에 의해 설정된 파라미터의 DSP 적용에 의한 3상 유도전동기의 실시간 제어)

  • 권양원;윤양웅;강학수;안태천
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.135-135
    • /
    • 2000
  • In this Paper. the DSP implementation of induction motor drive is Presented on the viewpoint of the design and experiment. The speed estimation of control system for induction motor drive is designed on the base of neural network speed estimator. This neural network speed estimator is experimentally applied to the induction motor system. This system Provides the satisfactory results.

  • PDF

Sliding Mode Control based on Recurrent Neural Network (회귀신경망을 이용한 슬라이딩 모드 제어)

  • 홍경수;이건복
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.135-139
    • /
    • 2000
  • This research proposes a nonlinear sliding mode control. The sliding mode control is designed according to Lyapunov function. The equivalent control term is estimated by neural network. To estimate the unknown part in the control law in on-line fashion, A recurrent neural network is given as on-line estimator. The stability of the control system is guaranteed owing to the on-line learning ability of the recurrent neural network. It is certificated through simulation results to be applied to nonlinear system that the function approximation and the proposed control scheme is very effective.

  • PDF

Design of Multi-Dynamic Neural Network Controller (다단동적 신경망 제어기 설계)

  • Cho, Hyun-Seob;Min, Jin-Kyoung
    • Proceedings of the KAIS Fall Conference
    • /
    • 2009.05a
    • /
    • pp.454-457
    • /
    • 2009
  • The intent of this paper is to describe a neural network structure called multi dynamic neural network(MDNN), and examine how it can be used in developing a learning scheme for computing robot inverse kinematic transformations. The architecture and learning algorithm of the proposed dynamic neural network structure, the MDNN, are described. Computer simulations are demonstrate the effectiveness of the proposed learning using the MDNN.

  • PDF