• Title/Summary/Keyword: neural network.

Search Result 11,766, Processing Time 0.04 seconds

Neural Network Models and Psychiatry (신경망 모델과 정신의학)

  • Koh, InSong
    • Korean Journal of Biological Psychiatry
    • /
    • v.4 no.2
    • /
    • pp.194-197
    • /
    • 1997
  • Neural network models, also known as connectionist models or PDP models, simulate some functions of the brain and may promise to give insight in understanding the cognitive brain functions. The models composed of neuron-like elements that are linked into circuits can learn and adapt to its environment in a trial and error fashion. In this article, the history and principles of the neural network modeling are briefly reviewed, and its applications to psychiatry are discussed.

  • PDF

Speed control of AC Servo motor using neural network (뉴럴네트웤을 이용한 AC 서보 전동기의 속도제어)

  • Ban, Gi-Jong;Yun, Gwang-Ho;Choe, Seong-Dae;Nam, Moon-Hyon;Kim, Lark-Kyo
    • Proceedings of the KIEE Conference
    • /
    • 2005.07d
    • /
    • pp.2747-2749
    • /
    • 2005
  • This paper presents an intelligent control system for an ac servo motor dirve to track periodic commands using a neural network. AC servo motor drive system is rather similar to a linear system. However, the uncertainties, such as machanical parametric variation, external disturbance, uncertainty due to nonideal in transient state. therefore an intelligent control system that isan on-line trained neural network controller with adaptive learning rates.

  • PDF

An application of neural network to autopilot design (신경회로망을 이용한 자동조종장치 설계)

  • 유재종;송찬호
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.619-623
    • /
    • 1993
  • In this paper, a neural network is appled to design a lateral autopilot for airplanes. Linearized lateral dynamics is used in training the neural network controller and verifying the performance as well. To train the neural network, back propagation algorithm is used. In this training, no information about the dynamics to be controlled except sign and rough magnitude of control derivatives is needed. It is shown by computer simulations that the performance and stability margin are satisfactory.

  • PDF

Automatic Detection of Interstitial Lung Disease using Neural Network

  • Kouda, Takaharu;Kondo, Hiroshi
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.2 no.1
    • /
    • pp.15-19
    • /
    • 2002
  • Automatic detection of interstitial lung disease using Neural Network is presented. The rounded opacities in the pneumoconiosis X-ray photo are picked up quickly by a back propagation (BP) neural network with several typical training patterns. The training patterns from 0.6 mm ${\O}$ to 4.0 mm ${\O}$ are made by simple circles. The total evaluation is done from the size and figure categorization. Mary simulation examples show that the proposed method gives much reliable result than traditional ones.

Fuzzy Rules Optimizing by Neural Network-based Adaptive Fuzzy Control

  • K, K.-Wong;Akio, Katuki
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.96.2-96
    • /
    • 2001
  • This paper presents a control method for the experimental mobile vehicle. By merging the advantages of neural network, adaptive and fuzzy control, neural network-based adaptive fuzzy control is proposed. It can deal with a large amount of training data by neural network, from these data producing more accurate fuzzy rules by adaptive control, and then controlling the object by fuzzy control. This is not the simple combination of the three methods, but merging them into one control system Experiments and some future considerations are given.

  • PDF

Performance Comparison of Neural Network Algorithm for Shape Recognition of Welding Flaws (용접결함의 형상인식을 위한 신경회로망 알고리즘의 성능 비교)

  • 김재열;심재기;이동기;김창현;송경석;양동조
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.271-276
    • /
    • 2003
  • In this study, we compared backpropagation neural network(BPNN) with probabilistic neural network(PNN) as shape recognition algorithm of welding flaws. For this purpose, variables are applied the same to two algorithm. Here, feature variable is composed of time domain signal itself and frequency domain signal itself, Through this process, we comfirmed advantages/disadvantages of two algorithms and identified application methods of two algorithms.

  • PDF

Vibration Prediction in Mill Process by Using Neural Network (신경회로망을 이용한 밀링 공정의 진동 예측)

  • 이신영
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.04a
    • /
    • pp.272-277
    • /
    • 2003
  • In order to predict vibration during end-milling process, the cutting dynamics was modelled by using neural network and combined with structural dynamics by considering dynamic cutting states. Specific cutting constants of the cutting dynamics model were obtained by averaging cutting forces and tool diameter, cutting speed, feed, axial depth radial depth were considered as machining factors. Cutting farces by test and by neural network simulation were compared and the vibration during end-milling was simulated.

  • PDF

Neural Network Evolution based on DNA Coding Method (DNA Coding Method에 기반한 신경회로망 진화 기법)

  • Lee, Won-Hui;Kang, Hun
    • Proceedings of the IEEK Conference
    • /
    • 1999.06a
    • /
    • pp.456-459
    • /
    • 1999
  • In this paper, we propose a new neural network based on the DNA coding method. The initial population of the structure information and the weights for the neural network is generated, and then the descendants are chose with the Elitist selection by the genetic algorithm. The evolutionary technique and the suitable fitness measure are used to find a neural network with the fractal number of layers. which represents a good approximation to the given function.

  • PDF

Control Method of Nonlinear System using Dynamical Neural Network (동적 신경회로망을 이용한 비선형 시스템 제어 방식)

  • 정경권;이정훈;김영렬;이용구;손동설;엄기환
    • Proceedings of the IEEK Conference
    • /
    • 2002.06c
    • /
    • pp.33-36
    • /
    • 2002
  • In this paper, we propose a control method of an unknown nonlinear system using a dynamical neural network. The method proposed in this paper performs for a nonlinear system with unknown system, identification with using the dynamical neural network, and then a nonlinear adaptive controller is designed with these identified informations. In order to verify the effectiveness of the proposed algorithm, we simulated one-link manipulator. The simulation result showed the effectiveness of using the dynamical neural network in the adaptive control of one-link manipulator.

  • PDF

Fabrication of a Neural Network IC for Korean Vowels Recognition (한국어 모음인식 신경회로망 집적회로의 제작)

  • 최상훈;윤태훈;김재창
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.30B no.8
    • /
    • pp.71-75
    • /
    • 1993
  • This paper presents a neural network IC for Korean vowels recognition. The neural network is composed with three levels and which is learned by Back Propagation algorithm. In the neural network IC, the neuron bodys and synapses are implemented with CMOS inverters and ion-implanted polysilicon resistors.

  • PDF