• Title/Summary/Keyword: neural network.

Search Result 11,767, Processing Time 0.04 seconds

Development of Personal-Credit Evaluation System Using Real-Time Neural Learning Mechanism

  • Park, Jong U.;Park, Hong Y.;Yoon Chung
    • The Journal of Information Technology and Database
    • /
    • v.2 no.2
    • /
    • pp.71-85
    • /
    • 1995
  • Many research results conducted by neural network researchers have claimed that the classification accuracy of neural networks is superior to, or at least equal to that of conventional methods. However, in series of neural network classifications, it was found that the classification accuracy strongly depends on the characteristics of training data set. Even though there are many research reports that the classification accuracy of neural networks can be different, depending on the composition and architecture of the networks, training algorithm, and test data set, very few research addressed the problem of classification accuracy when the basic assumption of data monotonicity is violated, In this research, development project of automated credit evaluation system is described. The finding was that arrangement of training data is critical to successful implementation of neural training to maintain monotonicity of the data set, for enhancing classification accuracy of neural networks.

  • PDF

A study on the Convergence Condition of Chaotic Dynamic Neural Networks

  • Kim, Sang-Hee;Wang, Hua O.
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.7 no.4
    • /
    • pp.242-248
    • /
    • 2007
  • This paper analyzes on the chaos characteristics of the chaotic neural networks and presents the convergence condition. Although the transient chaos of neural network sould be beneficial to overcome the local minimum problem and speed up the learning, the permanent chaotic response gives adverse effect on optimization problems and makes neural network unstable in general. This paper investigates the dynamic characteristics of the chaotic neural networks with the chaotic dynamic neuron, and presents the convergence condition for stabilizing the chaotic neural networks.

Learning of Differential Neural Networks Based on Kalman-Bucy Filter Theory (칼만-버쉬 필터 이론 기반 미분 신경회로망 학습)

  • Cho, Hyun-Cheol;Kim, Gwan-Hyung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.8
    • /
    • pp.777-782
    • /
    • 2011
  • Neural network technique is widely employed in the fields of signal processing, control systems, pattern recognition, etc. Learning of neural networks is an important procedure to accomplish dynamic system modeling. This paper presents a novel learning approach for differential neural network models based on the Kalman-Bucy filter theory. We construct an augmented state vector including original neural state and parameter vectors and derive a state estimation rule avoiding gradient function terms which involve to the conventional neural learning methods such as a back-propagation approach. We carry out numerical simulation to evaluate the proposed learning approach in nonlinear system modeling. By comparing to the well-known back-propagation approach and Kalman-Bucy filtering, its superiority is additionally proved under stochastic system environments.

The Single Step Prediction of Multi-Input Multi-Output System using Chaotic Neural Networks (카오틱 신경망을 이용한 다입력 다출력 시스템의 단일 예측)

  • 장창화;김상희
    • Proceedings of the IEEK Conference
    • /
    • 1999.06a
    • /
    • pp.1041-1044
    • /
    • 1999
  • In This paper, we investigated the single step prediction for output responses of chaotic system with multi Input multi output using chaotic neural networks. Since the systems with chaotic characteristics are coupled between internal parameters, the chaotic neural networks is very suitable for output response prediction of chaotic system. To evaluate the performance of the proposed neural network predictor, we adopt for Lorenz attractor with chaotic responses and compare the results with recurrent neural networks. The results demonstrated superior performance on convergence and computation time than the predictor using recurrent neural networks. And we could also see good predictive capability of chaotic neural network predictor.

  • PDF

The Optimal Model of Fuzzy-Neural Network Structure using Genetic Algorithm and Its Application to Nonlinear Process System (유전자 알고리즘을 사용한 퍼지-뉴럴네트워크 구조의 최적모델과 비선형공정시스템으로의 응용)

  • 최재호;오성권;안태천;황형수
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1996.10a
    • /
    • pp.302-305
    • /
    • 1996
  • In this paper, an optimal identification method using fuzzy-neural networks is proposed for modeling of nonlinear complex systems. The proposed fuzzy-neural modeling implements system structure and parameter identification using the intelligent schemes together with optimization theory, linguistic fuzzy implication rules, and neural networks(NNs) from input and output data of processes. Inference type for this fuzzy-neural modeling is presented as simplified inference. To obtain optimal model, the learning rates and momentum coefficients of fuzz-neural networks(FNNs) and parameters of membership function are tuned using genetic algorithm(GAs). For the purpose of its application to nonlinear processes, data for route choice of traffic problems and those for activated sludge process of sewage treatment system are used for the purpose of evaluating the performance of the proposed fuzzy-neural network modeling. The show that the proposed method can produce the intelligence model w th higher accuracy than other works achieved previously.

  • PDF

Adaptive PID controller based on error self-recurrent neural networks (오차 자기순환 신경회로망에 기초한 적응 PID제어기)

  • Lee, Chang-Goo;Shin, Dong-Young
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.4 no.2
    • /
    • pp.209-214
    • /
    • 1998
  • In this paper, we are dealing with the problem of controlling unknown nonlinear dynamical system by using neural networks. A novel error self-recurrent(ESR) neural model is presented to perform black-box identification. Through the various outcome of the experiment, a new neural network is seen to be considerably faster than the BP algorithm and has advantages of being less affected by poor initial weights and learning rate. These characteristics make it flexible to design the controller in real-time based on neural networks model. In addition, we design an adaptive PID controller that Keyser suggested by using ESR neural networks, and present a method on the implementation of adaptive controller based on neural network for practical applications. We obtained good results in the case of robot manipulator experiment.

  • PDF

Auto Generation of Fuzzy Control Rule using Neural-Fuzzy Fusion (뉴럴-퍼지 융합을 이용한 퍼지 제어 규칙의 자동생성에 관한 연구)

  • Lim, Kwang-Woo;Kim, Yong-Ho;Kang, Hoon;Jeon, Hong-Tae
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.29B no.11
    • /
    • pp.120-129
    • /
    • 1992
  • In this paper we propose a fuzzy-neural network(FNN) which includes both advantages of the fuzzy logic and the neural network. The basic idea of the FNN is to realize the fuzzy rule-base and the process of reasoning by neural network and to make the corresponding parameters be expressed by the connection weights of neural network. After constructing the FNN, a novel controller consisting of a conventional P-controller and a FNN is explained. In this control scheme, the rule-base of a FNN are automatically generated by error back-propagation algorithm. Also the parallel connection of the P-controller and the FNN can guarantee the stability of a plant at initial stage before the rules are completely created. Finally the effectiveness of the proposed strategy will be verified by computer simulations using a 2 degree of freedom robot manipulator.

  • PDF

Neural Network-Based Human Identification Using Teeth Contours (치아 윤곽선 정보를 이용한 신경회로망 기반 신원 확인 방안)

  • Park, Sang-Jin;Park, Hyungjun
    • Korean Journal of Computational Design and Engineering
    • /
    • v.18 no.4
    • /
    • pp.275-282
    • /
    • 2013
  • This paper proposes a method for human identification using teeth contours extracted from dental images that are captured from the frontal views of subjects each of who opens his or her mouth slightly. Each dental image has a black-colored region containing the subject's teeth contours which are usually different from subject to subject. This means that this black-colored region has bio-mimetic information useful for human identification. The basic idea of the method is to extract the upper and lower teeth contours from the dental image of each subject and to encode their geometric patterns using a back-propagation neural network model. After acquiring 400 teeth images form 10 university students, we used 300 images for the training data of the neural network model and 100 images for its verification. Experimental results have shown that the proposed neural network-based method can be used as an alternative solution for identification among a small group of humans with a low cost and simple setup.

Neural Networks-based Statistical Approach for Fault Diagnosis in Nonlinear Systems (비선형시스템의 고장진단을 위한 신경회로망 기반 통계적접근법)

  • Lee, In-Soo;Cho, Won-Chul
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.12 no.6
    • /
    • pp.503-510
    • /
    • 2002
  • This paper presents a fault diagnosis method using neural network-based multi-fault models and statistical method to detect and isolate faults in nonlinear systems. In the proposed method, faults are detected when the errors between the system output and the neural network nominal system output cross a predetermined threshold. Once a fault in the system is detected, the fault classifier statistically isolates the fault by using the error between each neural network-based fault model output and the system output. From the computer simulation results, it is verified that the proposed fault diagonal method can be performed successfully to detect and isolate faults in a nonlinear system.

Study on Streamflow Prediction Using Artificial Intelligent Technique (인공지능기법을 이용한 하천유출량 예측에 관한 연구)

  • An, Seung Seop;Sin, Seong Il
    • Journal of Environmental Science International
    • /
    • v.13 no.7
    • /
    • pp.611-618
    • /
    • 2004
  • The Neural Network Models which mathematically interpret human thought processes were applied to resolve the uncertainty of model parameters and to increase the model's output for the streamflow forecast model. In order to test and verify the flood discharge forecast model eight flood events observed at Kumho station located on the midstream of Kumho river were chosen. Six events of them were used as test data and two events for verification. In order to make an analysis the Levengerg-Marquart method was used to estimate the best parameter for the Neural Network model. The structure of the model was composed of five types of models by varying the number of hidden layers and the number of nodes of hidden layers. Moreover, a logarithmic-sigmoid varying function was used in first and second hidden layers, and a linear function was used for the output. As a result of applying Neural Networks models for the five models, the N10-6model was considered suitable when there is one hidden layer, and the Nl0-9-5model when there are two hidden layers. In addition, when all the Neural Network models were reviewed, the Nl0-9-5model, which has two hidden layers, gave the most preferable results in an actual hydro-event.