• Title/Summary/Keyword: neural network.

Search Result 11,767, Processing Time 0.035 seconds

An Neural Network Approach to Job-shop Scheduling based on Reinforcement Learning (Neural Network를 이용한 강화학습 기반의 잡샵 스케쥴링 접근법)

  • Jeong, Hyun-Seok;Kim, Min-Woo;Lee, Byung-Jun;Kim, Kyoung-Tae;Youn, Hee-Yong
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2018.07a
    • /
    • pp.47-48
    • /
    • 2018
  • 본 논문에서는 NP-hard 문제로 알려진 잡샵 스케쥴링에 대하여 강화학습적 측면에서 접근하는 방식에 대해 제안한다. 다양한 시간이 소요되는 업무들이 가지는 특징들을 최대한 state space aggregation에 고려하고, 이를 neural network를 통해 최적화 시간을 줄이는 방식이다. 잡샵 스케쥴링에 대한 솔루션은 미래에 대한 예측이 불가능하고 다양한 시간이 소요되는 스케쥴링 문제를 최적화하는 것에 대한 가능성을 제시할 것으로 기대된다.

  • PDF

Proper Arc Welding Condition Derivation of Auto-body Steel by Artificial Neural Network (신경망 알고리즘을 이용한 차체용 강판 아크 용접 조건 도출)

  • Cho, Jungho
    • Journal of Welding and Joining
    • /
    • v.32 no.2
    • /
    • pp.43-47
    • /
    • 2014
  • Famous artificial neural network (ANN) is applied to predict proper process window of arc welding. Target weldment is variously combined lap joint fillet welding of automotive steel plates. ANN's system variable such as number of hidden layers, perceptrons and transfer function are carefully selected through case by case test. Input variables are welding condition and steel plate combination, for example, welding machine type, shield gas composition, current, speed and strength, thickness of base material. The number of each input variable referred in welding experiment is counted and provided to make it possible to presume the qualitative precision and limit of prediction. One of experimental process windows is excluded for predictability estimation and the rest are applied for neural network training. As expected from basic ANN theory, experimental condition composed of frequently referred input variables showed relatively more precise prediction while rarely referred set showed poorer result. As conclusion, application of ANN to arc welding process window derivation showed comparatively practical feasibility while it still needs more training for higher precision.

A Study on Optimal Process Design of Hydroforming Process with n Genetic Algorithm and Neural Network (Genetic Algorithm과 Neural Network을 이용한 Tube Hydroforming의 성형공정 최적화에 대한 연구)

  • 양재봉;전병희;오수익
    • Transactions of Materials Processing
    • /
    • v.9 no.6
    • /
    • pp.644-652
    • /
    • 2000
  • Tube hydroforming is recently drawing attention of automotive industries due to its several advantages over conventional methods. It can produce wide range of products such as subframes, engine cradles, and exhaust manifolds with cheaper production cost by reducing overall number of processes. h successful tube hydroforming depends on the reasonable combination of the internal pressure and axial load at the tube ends. This paper deals with the optimal process design of hydroforming process using the genetic algorithm and neural network. An optimization technique is used in order to minimize the tube thickness variation by determining the optimal loading path in the tube expansion forming and the tube T-shape forming process.

  • PDF

Functional Classification of Myoelectric Signals Using Neural Network for a Artificial Arm Control Strategy (인공팔 제어를 위한 근전신호의 신경회로망을 이용한 기능분석)

  • 손재현;홍성우;남문현
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.43 no.6
    • /
    • pp.1027-1035
    • /
    • 1994
  • This paper aims to make an artificial arm control strategy. For this, we propose a new feature extraction method and design artificial neural network for the functional classification of myoelectric signal(MES). We first transform the two channel myoelectric signals (MES) for biceps and triceps into frequency domain using fast Fourier transform (FFT). And features were obtained by comparing the magnitudes of ensemble spectrum data and used as inputs to the three-layer neural network for the learning. By changing the number of units in hidden layer of neural network we observed the improvement of classification performance. To observe the effeciency of the proposed scheme we performed experiments for classification of six arm functions to the three subjects. And we obtained on average 94[%] the ratio of classification.

Stable Predictive Control of Chaotic Systems Using Self-Recurrent Wavelet Neural Network

  • Yoo Sung Jin;Park Jin Bae;Choi Yoon Ho
    • International Journal of Control, Automation, and Systems
    • /
    • v.3 no.1
    • /
    • pp.43-55
    • /
    • 2005
  • In this paper, a predictive control method using self-recurrent wavelet neural network (SRWNN) is proposed for chaotic systems. Since the SRWNN has a self-recurrent mother wavelet layer, it can well attract the complex nonlinear system though the SRWNN has less mother wavelet nodes than the wavelet neural network (WNN). Thus, the SRWNN is used as a model predictor for predicting the dynamic property of chaotic systems. The gradient descent method with the adaptive learning rates is applied to train the parameters of the SRWNN based predictor and controller. The adaptive learning rates are derived from the discrete Lyapunov stability theorem, which are used to guarantee the convergence of the predictive controller. Finally, the chaotic systems are provided to demonstrate the effectiveness of the proposed control strategy.

Prediction of Deep-Excavation induced Ground surface movements using Artifical Neural Network (인공신경망기법을 이용한 깊은 굴착에 따른 지표변위 예측)

  • 유충식;최병석
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.10a
    • /
    • pp.451-458
    • /
    • 2002
  • This paper presents the prediction of deep excavation-induced ground surface movements using artificial neural network, which is of prime importance in the perspective of damage assessment of adjacent buildings. A finite element model, which can realistically replicate deep-excavation-induced ground movements was employed and validated against available large-scale model test results. The validated model was then used to perform a parametric study on deep excavations with emphasis on ground movements. Using the result of the finite element analysis, Artificial Neural Network(ANN) system is formed, which can be used in the prediction of deep exacavation-induced ground surface displacements. The developed ANN system can be effecting used for a first-order prediction of ground movements associated with deep-excavation.

  • PDF

A Position Sensorless Control System of SRM over Wide Speed Range

  • Baik, Won-Sik
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.3
    • /
    • pp.66-73
    • /
    • 2008
  • This paper presents a position sensorless control system of SRM over wide speed range. Due to the doubly salient structure of the SRM, the phase inductance varies along with the rotor position. Most of the sensorless control techniques are based on the fact that the magnetic status of the SRM is a function of the angular rotor position. The rotor position estimation of the SRM is somewhat difficult because of its highly nonlinear magnetizing characteristics. In order to estimate more accurate rotor position over wide speed range, Neural Network is used for this highly nonlinear function approximation. Magnetizing data patterns of the prototype 1-hp SRM are obtained from locked rotor test, and used for the Neural Network training data set. Through measurement of the flux-linkage and phase currents, rotor position is able to estimate from current-flux-rotor position lookup table which is constructed from trained Neural Network. Experimental results for a 1-hp SRM over 16:1 speed range are presented for the verification of the proposed sensorless control algorithm.

Pattern Classification Method using SOFM and Multilayer Neural Network (SOFM과 다층신경회로망을 이용한 패턴 분류 방식)

  • 박진성;공휘식;이현관;김주웅;엄기환
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2002.11a
    • /
    • pp.296-300
    • /
    • 2002
  • We proposed a method of a pattern classification using unsupervised teaming rules, SOFM, and supervised teaming rules, Multilayer neural network. Establish result that classify and get input pattern using SOFM by initial weighting vector of Multilayer neural network and target value. Got superior Performance as result that do simulation about face image to confirm usefulness of way that propose.

  • PDF

Cable Color Recognition Using a Back-Propagation Neural Network (역전파 신경망을 이용한 케이블의 색깔인식)

  • Lee, Moon-Kyu;Yun, Chan-Kyun
    • IE interfaces
    • /
    • v.8 no.1
    • /
    • pp.5-13
    • /
    • 1995
  • Automated vision inspection has become a vital part of computer related industries. Most of the existing inspection systems mainly utilize black and white images. In this paper, we consider an application of automated vision inspection in which cable color has to be recognized in order to detect the quality status of assembled wire harness. A back-propagation neural network is proposed to classify seven different cable colors. To represent a single point in image space, we use the ($L^*,\;a^*,\;b^*$) model which is one of commonly used color-coordinate systems in image processing. After training the neural network with ($L^*,\;a^*,\;b^*$) data obtained from color image, we tested its performance. The results show that the neural network is able to classify cable colors with high performance.

  • PDF

An Auto-tuning of PID Controller using Fuzzy Performance Measure and Neural Network for Equipment System (전력설비시스템을 위한 퍼지 평가함수와 신경회로망을 사용한 PID제어기의 자동동조)

  • ;李壽欽
    • The Proceedings of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.13 no.2
    • /
    • pp.195-195
    • /
    • 1999
  • This paper is Proposed a new method to deal with the optimized auto-tuning for the PID controller which is used to the process-control in various fields. First of all, in this method, 1st order delay system with dead time which is modelled from the unit step response of the system is Pade-approximated, then initial values are determined by the Ziegler-Nickels method. So we can find the parameters of PID controller so as to minimize the fuzzy criterion function which includes the maximum overshoot, damping ratio, rising time and settling time. Finally, after studying the parameters of PID controller by Backpropagation of Neural-Network, when we give new K, L, T values to Neural-Network, the optimized parameter of PID controller is found by Neural-Network Program.