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Stable Predictive Control of Chaotic Systems
Using Self-Recurrent Wavelet Neural Network

Sung Jin Yoo, Jin Bae Park’, and Yoon Ho Choi

Abstract: In this paper, a predictive control method using self-recurrent wavelet neural
network (SRWNN) is proposed for chaotic systems. Since the SRWNN has a self-recurrent
mother wavelet layer, it can well attract the complex nonlinear system though the SRWNN has
less mother wavelet nodes than the wavelet neural network (WNN). Thus, the SRWNN is used
as a model predictor for predicting the dynamic property of chaotic systems. The gradient
descent method with the adaptive learning rates is applied to train the parameters of the
SRWNN based predictor and controller. The adaptive learning rates are derived from the
discrete Lyapunov stability theorem, which are used to guarantee the convergence of the
predictive controller. Finally, the chaotic systems are provided to demonstrate the effectiveness

of the proposed control strategy.

Keywords: Self-recurrent wavelet neural network, predictive control, adaptive learning rate,

gradient descent, chaos control.

1. INTRODUCTION

Chaos control is very active area of research and
has sustained much interest due to potential
applications in various areas. Chaos is a special
feature of complex parametric nonlinear dynamical
systems, which has the random-like behavior usually
shown in statistical systems although it is associated
with  deterministic  dynamics. Recently many
researchers have managed to use modern powerful
methods for controlling chaotic systems [[-3]. But
most of them can be applied to control chaotic
systems when the exact or at least the approximate
mathematical model for chaotic systems is available.
To solve this shortcoming, predictive control methods,
which are considered as a kind of adaptive control
strategy, were introduced for controlling unknown
chaotic systems [4].

On the other hand, the intelligent techniques using
network structures such as neural network (NN) and
radial basis function network (RBFN) have been

Manuscript received February 3, 2004; revised November
19, 2004; accepted December 21, 2004. Recommended by
Editorial Board member Jin Young Choi under the direction of
Editor-in-Chief Myung Jin Chung.

Sung Jin Yoo and Jin Bae Park are with the Department of
Electrical and Electronic Engineering, Yonsei University,
Seodaemun-Gu, Seoul 120-749, Korea (e-mails: {niceguy
1201, jbpark} @control.yonsei.ac.kr).

Yoon Ho Choi is with the School of Electronic Engineering,
Kyonggi University, Kyonggi-Do, Suwon 442-760, Korea (e-
mail: yhchoi@kuic.kyonggi.ac.kr).

* Corresponding author.

developed to control chaotic systems [5,6]. Also,
some papers successfully applied these network
structures to the model predictor of predictive control
[7,8]. But they have some drawbacks, which come
from their inherent characteristics. NN has some
limitation such as slow convergence, settlement of
local minima. In the case of RBFN, even if the RBFN
can represent any function that is in the space spanned
by the family of basis functions, the basis functions
are generally not orthogonal. That is, RBFN
representation is not unique and is probably not the
most efficient [9]. To overcome these problems, the
WNN, which absorbs the advantage of high resolution
of wavelets and the advantages of learning and
feedforward of neural networks, is proposed to
guarantee the fast convergence and is used as a new
powerful tool for function approximation, because of
their intrinsic properties of finite support and self-
similarity [9-11]. Since the basis functions of WNN
are orthogonal, the WNN provides a unique and
efficient representation for the given functions.
However, the WNN has a disadvantage that it can be
used only for static problems due to its feedforward
network structure. That is, the WNN is not the most
suitable in solving temporal problems like predicting
the behaviors of complex chaotic systems. Therefore,
we develop a new structure, self-recurrent wavelet
neural network (SRWNN), which combines the
properties of attractor dynamics of recurrent neural
network (RNN) [12,13] and the fast convergence of
WNN to solve the control problem for chaotic systems.
The proposed SRWNN, a modified model of the
WNN, has a mother wavelet layer composed of self-
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feedback neurons. Since a self-feedback neuron can
store past information of the network, it can capture
the dynamic response of the system. This
modification allows the SRWNN to be applied well to
the complex chaotic systems, though the SRWNN has
less wavelet nodes than the WNN. Thus, the structure
of the SRWNN can be simpler than that of the WNN.
Accordingly, the SRWNN is more suitable in real-
time control application than the WNN.

In this paper, we propose the design method of the
SRWNN based controller using the predictive control
scheme to solve the control problem for chaotic
systems. Here, the SRWNN is used as the model
predictor for chaotic systems. Also the back-
propagation algorithm with adaptive learning rates is
used for training the SRWNN. The adaptive learning
rates are derived in the sense of discrete Lyapunov
stability analysis, which are used to guarantee the
convergence of the SRWNN predictor and controller in
the proposed control system. Finally, we consider the
chaotic nonlinear systems to show the effectiveness of
the proposed SRWNN based predictive control.

This paper is organized as follows: In Section 2, we
discuss the identification of chaotic systems using the
SRWNN. Here, the architecture and training algorithm
of the SRWNN is presented, and the stability of the
SRWNN based predictor is analyzed. Section 3
presents the SRWNN based predictive control strategy
and also the stability of controller is analyzed.
Simulation results are discussed in Section 4. Section
5 gives the conclusion of this paper.

2. IDENTIFICATION OF CHAOTIC
SYSTEMS USING THE SRWNN

This Section discusses the identification of chaotic
systems using the SRWNN. We first describe the
SRWNN structure, and then the identification method
with the SRWNN is presented for chaotic systems.
Finally, we derive the convergence theorems for
selecting the appropriate learning rates to identify the
chaotic systems.

2.1. The SRWNN structure

In this paper, we consider the SRWNN structure
with multi-input and single-output. A schematic
diagram of the proposed SRWNN structure is shown
in Fig. 1, which has N; inputs, one output, and

N;xN,, the mother wavelet nodes (“wavelons™). The

SRWNN structure consists of four layers.

The layer 1 is an input layer. This layer accepts the
input variables and transmits the accepted inputs to
the next layer directly.

The layer 2 is a wavelon layer. Each node of this
layer consists of a wavelon with a self-feedback loop.
In this paper, we select the first derivative of a

gaussian function, (p(x)=—xexp(—%x2 ) as a mother
wavelet function. A wavelet ¢ of each node is

derived from its mother wavelet function ¢ as
follows:
g —m; g —m,;
Jk Jjk . Jk Jk
01 (z) = 0(F—0), with 2, =L~
Jk Jk

> (D)

where mj and dy are the translation factor and

the dilation factor of the wavelets, respectively. The
subscript jk indicates the k th input term of the
j th wavelet. In addition, the inputs of this layer for
discrete time » can be denoted by

i (n) =% (M) + 0 (n=1)-6 5, @

where 0 ; denotes the weight of the self-feedback

loop. The input of this layer contains the memory
term ¢ 4 (n—1), which can store the past information

of the network. That is, the current dynamics of the
system is conserved for the next sample step. Thus,
even if the SRWNN has less wavelons than the WNN,
the SRWNN can attract well the system with complex
dynamics. Here, 0 is a factor to represent the rate

of information storage. These aspects are the apparent
dissimilar point between the WNN and the SRWNN,
And also, the SRWNN is a generalization system of
the WNN because the SRWNN structure is the same
as the WNN structure when 6, =0.

The layer 3 is a product layer. The nodes in this
layer are given by the product of the wavelons as
follows:

Ni
O x)=]] olz)
k=1

1 [_(ij)exp(—%(zjk )2)}

k=1

3

Layer 4

Layer 3

" Layer2

Layer 1

Fig. 1. Structure of the proposed SRWNN.
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The layer 4 is an output layer. The node output is a
linear combination of consequences obtained from the
output of the layer 3. In addition, the output node
accepts directly input values from the input layer.
Therefore, the output of SRWNN is composed by
each self-recurrent wavelet and parameters as follows:

N, N;
Y =2 w;® () + 2 @, @)
= k=1

where w 5

nodes and output nodes, and «

is the connection weight between product

; 1s the connection
weight between the input nodes and the output nodes.
W is the weighting vector of SRWNN:

T
W=lag my dy By wil, (5)

where the initial values of tuning parameters a; ,

mi, djy,and w; are given randomly in the range

of [-1 1], but djy>0. And also, the initial values of
6 are given by 0. That is, there are no feedback

units initially.

2.2. ldentification method for chaotic systems

This paper uses the series-parallel method for the
identification of chaotic systems. The identification
structure is shown in Fig. 2. The identification model
for the chaotic system is composed of the SRWNN
and tapped delay lines. The current input, the past
inputs, and the past outputs of the system are fed into
the SRWNN and the error ¢;(n) between the actual

system output and the SRWNN output is used to train
the SRWNN. The SRWNN output will attract the
output trajectories of chaotic systems. The current
SRWNN output represents as follows [14,15]:

yl(n)zf(yc(n_l)’ yp(n_z)a cery

(6)
y(n=N), u(n), u(n-1),

o U(n—=N,)),

where N; and N,

outputs and the past input state variables, respectively.
And also, y.(n) and u(n) are the chaotic system

indicate the number of the past

output and the identification input, respectively.

In this paper, we use the gradient-descent (GD)
method to train the SRWNN structure. Our goal is to
minimize the following quadratic cost function:

J](")=“[yc(n) y1(n)] :Ee[(n) (7

where y.(n) isthe chaotic system output and y,(n)

: : n

' Nl Chaotic System ] yc( )i
|

L R

I

A

u,(n) —ﬂ_‘ SR\(VNNW

AN

Fig. 2. Identification structure using the SRWNN.

J’/(n)

= p(n) is the current output of the SRWNN for the

discrete time #. By using the GD method, the weight

values of the SRWNN are adjusted so that the error is

minimized after a given number of training cycles.
The gradient-descent method may be defined as:

Wn+D)=W((n)+AW(n)

0J;(n) (8)
own) )

=W(n)+n,; (—

where m; represents the learning rate of the SRWNN

and W is weighting vector, which is defined in
Section 2.1.
The partial derivative of the cost function with respect
to W(n) is

0Jy(n) _
oW (n)

Oer(n)
oW (n)

__ 9y(n)
=—er (")aW( ) ©

=e(n)———

By applying the chain rule recursively, the error
term for each layer is first calculated, and then the
parameters in the corresponding layers are adjusted.
The components of the weighting vector are

b

y;(n):xk’ (10)
8ak(n)

om ) dy Bry (11)
a n) W a(D-(X)

yi( L, L (12)
8dj(n)  dy 7 0z

Dy (n W 00 . (x)

Q0 Y -y L (13)
ae]k(}’l) djk 62]/(
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Oy (n)

o, () = ;(x), (14)

where,

oo

P : :(P(Zﬂ)(P(ij)‘"¢(ij)"‘¢(ZjNi),
ij

. o0 ;
¢(ij):82] =(z

Jjk

1
i = Dexp(-—2j;).

2.3. Stability analysis for identification

To analyze the stability for the SRWNN based
identifier, let us define a discrete Lyapunov function
as

Vi(ny=J(n) =%ef (n), (15)

where e;(n) is the identification error. The subscript

I indicates the parameters related to the SRWNN
based identifier.
The change in the Lyapunov function is obtained by

AV (n) =V (n+1) =V, (n)

16
=§[e%(n+1)—e%(n>]. (1o

The error difference can be represented by [13,16]
Aej(n)=e;(n+1)—e;(n)

~|:ae[(n) '

17
A, (17)
ow,

where AW, =[Aa; Am; Ad; A8, Aw,]T represent

s the change of a weight vector of the SRWNN based
identifier. Using (8) and (9), AW, is obtained by

9y, (n)
AWy =177 e (m)—=—, (18)
oWy
where ﬁ,zdiag[n‘}, ", nd, n?, n}”} is the
learning rates of the tuning parameters. And, aayl—wf,n) =

T
Oy;(m) Oyp(n) Oy;(m) Sy;(m) 0dy/(n)
[ da; om; od;  08;  ow } denotes the

Jacobian of the identifier output y;(n) with respect
to the weighting vector of the SRWNN based
identifier.

Theorem 1: Let 77]=diag[nl], n%, n?, n‘},nﬂz

diag{n‘;, g, Y, n‘f’} be the learning rates

for the weights of the SRWNN based identifier and
define Cj ., as

Crman =| C c? c3 ct o 1
I,max — 1,max I,max I, max I, max 1, max

Z{max,, oy o |23
a1 6"’[1
0y (n) 0y (n) 0yy(n)

mdax

n n n

}.

Then, the asymptotic stability is guaranteed if n’II are

6d1 I wr

chosen to satisfy

0<n) <;2, i=1.,5.
(Clmax)

Proof: From (15), V;(n)>0. Thus, from (17) and
(18), the change of the Lyapunov function is

INAD =%[e%(n+1)—e%(n)]

= Ae; (e, <n>+%Ae, ()]

_| 9¢ (”) e )6)’1 (n)
aw, | T o,

. 1| 0e;(n) Oy (n)
e;(n)+ [ oW, } e () oW,
_ [amn)} ()ayl(n)
T ow, | T
1oy (n) Oy (n)
e;(n) { oW, } e (n) oW,
__ Oy;(n) -1 dy(n)
61()2 ( W]J zn{aWIJ
=—y,ef (n).

If y;>0, AV;(n)<0. Accordingly, the asymptotic
convergence of the SRWNN based identifier is
guaranteed. Here, we obtain 0<), <2/(Cj,max)2,
i=1,...,5. This completes the proof of the theorem. ™

Corollary 1: If the learning rates are chosen as

ul; :nil (i =1,...5), the maximum learning rate which
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guarantees convergence is n]}/[ =1/(Cy max)2~

Proof: Let C; ,,, be defined as

Cl,max = max, ”CI (I’l)l'

{5% (n) Oy;(n) Oy;(n)

:maxn
Oy;(n) Oy;(n)
00, ow; I
where |-| represents the Euclidean norm.
2 2
— 0y;(n) _ln 0y (n)
T ew, 7
2 1 2
“laop(i-gulaw?| a9

2
1 4 1 1
=_—||C1(I’l)” {T]I _7] +—>0
2 eyl ) 2

From (19), the maximum learning rate which

guarantees convergence is ny =1/(C,’max)2. This

completes the proof. ’
Theorem 2: Let 1% be the learning rate of input

direct weights for the SRWNN based identifier. The
asymptotic convergence is guaranteed if the learning

rate n; satisfies:

where N; is the input number of the SRWNN based
identifier. |x; ,,, | denote the maximum value of the

absolute values of the SRWNN based identifier’s input.
Proof:

C}(n)za)ﬁ(”) :[5)’1(’1) 0y (n) a)’1(’1)]
da; da Oay day.
=[x X2 XN ]

:X’

where X is the input vector of the SRWNN based

identifier and a; =[a ay -+ ay, . Then we have
HC} (n)” < JN; | X[ max | Therefore, from Theorem 1, we

find that 0 <1} < 2/(C} ypax)* = 2/(N; | X7 pyax I*)

In order to prove Theorem 22, the following lemmas
are used.

Lemma 1: Let f(r) =rexp(-#%). Then | f(£)|<1,
|Vf eR.

Lemma 2: Let g(t)=tzexp(—t2). Then |g(¢)|<]1,
|Vg € R.

Theorem 3: Let 17, n? and 1} be the learning

rates of the translation, dilation and self-feedback
weight for the SRWNN based identifier, respectively.
The asymptotic convergence is guaranteed if the
learning rates satisfy:

2
0<ny g < :
I
NN 2 -0.5
witi || Wi max |(%)
2
0<nf < 1
NN 2exp(0.5)
wai l Wi max | 147 min

where |wy 0. | and |dp ., | are the maximum
value of the absolute values of the output weight w;
and the dilation weight d;, respectively.

Proof:

1) The learning rate 7' of the translation weight m; :

Oyr(n
CRm =22
!
Ny o0
_zwl’j om
j= 1
N;
ffeCz) 20
_%w N’g M7 (20(z) 924 20)
= o
j=1 Tia olzp) Ozy Omy
Ny Y O0p(z;) Oz
<ZW1’]~ Zmax{——a——l———é——j——
= k=1 Zjk Oy

Ny Ni 1
<> Wi {Zmax(Zexp(—O.S)(—d—)]} @1)

j=1 k=1 !

According to Lemma 2,
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Thus, (20) is obviously smaller than (21). Then we
have

ZW“J—{zwm0$J

d[ min

<rr|w1max|

o

2exp(-0. 5)
dl min

Accordingly, from Theorem 1, we find that

2
0 < 22 N2N 12 0.5
T o ey
2) The learning rate n‘f of the dilation weight 4, :
) 9y1(n)
od,
Yy 00,
=20 3a,
Jj= !
N;
oG
Nw Nl :][=]1: Jk a(P(ij) aij
= Wl,j
=1 ot ®(zk) Ozj 0d;
i 09(z;)0z;
Jk Jk
<3 w, T (22)
Z j{kzl [ Oz 0dp ]}
N, N;
<ZW1_] Zmax[Zexp(O 5)( D . (23)
j=1 k=1 1
According to Lemmas 1 and 2,
2
jkexp( )‘<1
I 1, 1 1,
——=zg |expi—|———z% || < 1.
’(2 22”‘] p{ [2 2 ”‘]}

Thus, (22) is obviously smaller than (23). Then we
have

SO E Zwl, \/'_“(Zexp(() S)J

d] min

<\/—\/—~|W1maxl

2exp(0. 5)
d] Jmin

Accordingly, from Theorem 1, we find that

2 2 1
(C o) NN,

0<n? <
LY 2exp(o.5))

l WI max ‘( ldl,minl

3) The learning rate n? of the self-feedback
weight 0;:

0y, (n)

Cl(n)= =
!

i 0p(z4) 0z
<sz,{2ma( az]k aej,k]} (24)
Ny N; . _
< Z Wy {Z max(2exp(—0.5)(wn}. (25)
I

=1 k=1

According to Lemma 2,

(35 aeri a3

Thus, (24) is obviously smaller than (25).

let o] < zw,,r[zf”‘p( °5>]
d] min
<F\/—| 1max| 2exp(— 05)

dl min

Accordingly, from Theorem 1, we find that

2 1

TN, 2exp(-05)) |
Idl,minl —

O<n? <
(C?’m‘lx) ‘W[ Jmax {(

t.

Theorem 4: Let ny be the learning rate for
weights w; of the SRWNN based identifier. Then,

asymptotic stability is guaranteed if the learning rate
satisfies:

0<n?<gi,
w
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where N, is the number of nodes in the product
layer.
Proof:
CGm=221" g,
Wi

T
where, (D=[<D1 o, QJNW} is the output

vector of the product layer of the SRWNN based
identifier. Then, since we have @; <1 for all j,

|C,5(n) I<{N,,. Accordingly, from Theorem 1, we

find that 0<n) <2/N,,.

Remark 1: From Corollary 1, the maximum
learning rates of the SRWNN based identifier are

1
a, M
N, =
Ni |x1,max |
2

m,M oM 1 1

= Y oy |(2e0C0s)
Tmax 91 minl
2
1 1
Tl; N N, 2exp(0.5)
rmax 1,
M _1N,.

3. SRWNN BASED PREDICTIVE CONTROL

In this Section, we propose the SRWNN based
predictive control method for chaotic systems.
Suppose that a chaotic plant is given without precise
mathematical description of its structure and
parameters and that the given plant, although
uncertain, has an inherent unstable periodic orbit and
the system is currently in the chaotic state. The object
is to design a controller, which, when being added to
the plant in a feedback configuration, is used to drive
the closed-loop system response to move out of the
chaotic attractor and then to converge to the unstable
periodic orbit or the equilibrium point.

First, we describe the overall architecture and the
strategy of predictive control, and then develop the
condition for the learning rate to guarantee the
convergence of the proposed controller.

3.1. Predictive control using the SRWNN

1) SRWNN based one-step prediction: We first
describe the one-step ahead predictive control scheme.
Assume that the output data of the SRWNN are
available on-line for generating the control signal. In

u(n ’ T
( ) { Controller —

z > SRWNN

Plant
Chaotic System) -
Fig. 3. SRWNN based predictive control architecture.

our design method, an on-line prediction unit based on
the SRWNN is employed and a nonlinear feedback
controller based on a predictive control scheme is
implemented. The overall configuration of the SRWNN
based predictive control system is shown in Fig. 3,
where the SRWNN output y;(n) is controlled to
track the reference signal (n) .

Here, we use the SRWNN to predict future values of
the chaotic system. Our object is to look for an
optimal control signal u(n) to minimize the

following performance function:
1,
JC :Eec(n+l), (26)

where e-(n+1)=r(n+1)—y;(n+1) is the control

CITOor.
To minimize J-, wu(n) is recursively calculated via

the GD method.

u(n+1)=u(n) + Au(n)

=u(n)+nc [— 0Jc j @7

du(n) )

where 1 is the learning rate of the control input.

We can see that the controller relies on the SRWNN
based predictor. Thus to improve the controller
performance, it is necessary that the SRWNN output
well approaches the chaotic system output. In this
aspect, the SRWNN, which has an ability to store the
past information for predicting the future output, is a
suitable tool. Differentiating the cost function with
respect to u(n), it can be obtained by
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T
0Jc _ | Oyi(n+1)
au(n)_ [ oulm) }ec(n-%l), (28)

dy (n+l)
du(n)

with respect to u(k). It can be analytically evaluated
by using the known SRWNN structure, (4) as follows:

where is the gradient of the SRWNN model

Oy;(n+1) Oy;(n+1) 0Ox

Ouc(n) 0x  Ouc(n)
{Nw v, 00,03 } @9
) s Rkl LA B
e 02 k=N, +1

where 0x/0uc(n) is the column vector as follows:

ox | 0y(n) Oy(n—N;) Ouc(n)
duc(n) |duc(n) " duc(n)  Buc(n)
duc(n=N,) } (30)
Quc(n)

=00 010 - o]T,

where x is the inputs of the SRWNN based model
predictor.

2) Extension to multi-step prediction: Let the
prediction algorithm described above be extended to a
multi-step prediction control scheme, and redefine the
cost function by the vectors:

1
Jo = E[EC T(n+l)EC(n+1)J, G1)
where
Yi(n+D)=[y;(n+1) y,(n+2) v+ N,
R(n+1)=[r(n+1) r(n+2) i+ N
Ec(n+D)=[ec(n+1) ec(n+2) ecn+ My,

=[r(n+l)—y[(n+1) rn+2)—y;(n+2)
- r(n+N)—y;(n +N)];><1 .
Then, we define the control signal as:
U(n)=[u(n) u(n+1) u(n+N-D] .
where N denotes the number of prediction steps.

To minimize J¢, the control input vector U(n) is
updated via the GD method:

Um+1)=U(n)+AU(n)

—U(n)+ e (— ai}](i )J, (32)

where - is the learning rate of the control input.

And 27¢_ s expressed by the following equation:

aU(n)
8J oY, (n+1)]"
c = — 1 Ec(n+1), (33)
oU(n) oU(n)
where
A OY(n+l)
oU(n)
Oyi(n+l) 0 0 0
ou(n)
Oyi(n+2) Oy;(n+2)

ou(n) Su(n+1)

Oyj(n+N) Oy;(n+N) Oy;(n+N) 0y;(n+N)
Ou(n) Su(n+1)  Ju(n+2) Su(n+N=1) )y, s

(34)

From (32) and (33), the change of the control input is
AU(n) =G Ec(n+1), (35)

where G is a jacobian matrix. Using (35), while the

optimal control input is calculated, the main
computation is the matrix a;b(("njl) . The computing

procedure for this matrix is presented in Appendix.
3.2. Stability analysis for control

Similarly to Section 2.3, let us define a discrete
Lyapunov function as

Ve =3B (4 DEc(r+1), (36)

where Ep(n+1) is the control error vector. The
change in the Lyapunov function is obtained by

AVe(n)=Ve(n+ D) =Ve(n)
Z%[EC T(n+2)Ec(n+2) 37

—EcT(n+DEc(n+ 1)].

The error difference can be represented by
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OEc(n+1)
ou(n)

_ (oY1)
B oU(n)

AEc(n+1) z( jAU(n)
(38)

JAU(n),

where AU(n) is denoted by (35). Using (33) and
(38), AEc(n+1) is obtained by

AEc(n+1)=—GneG Ec(n+1). (39)

Lemma 3: Let a positive symmetric matrix My,
as:

M=ol -4,

where Ay.y 1is a positive symmetric matrix and

a>0 isareal number. / is a identity matrix. Then,
the eigenvalues of M can represent as follows:

eig(M) = eig(al) - eig(A4),

where
. T
elg(M):P‘M,I My XM,N} )
. T
eig(A)= [)‘A,l Xy XA,N} )

eig(al)=[a o - a]T.

Theorem S: Let 1 be the learning rate for control

input. Then, the asymptotic stability is guaranteed if
Ne are chosen to satisfy

2
0<ne < ,
max

where 1, denotes the maximum eigenvalue of the

matrix G'G .
Proof: From (36), V(n)>0. And, from (39), the

change in the Lyapunov function is
AV(n)=V(n+1)-V(n)
_ %[EC T(n+2)Ec(n+2)
—Ec(n+DEc(n+ 1)]

=AE:"(n+ 1)[Ec(n +D+ %AEC(n + 1)}

=—Ec'GneGT {EC - %GnCGTEC}

=—Ec T[GnCGT {1 ——;-GnCGT HEC

—Ec [ YQE,
where
Y=GncG', (40)
1
Q :I—EGT]CGT. (41)
If Y and Q are positive definite matrices,

AV(n) < 0. Thus, the Lyapunov stability is guaranteed.
To be Y>0 and Q>0, all eigenvalues of Y and
Q must be larger than 0. To satisfy this condition, we
obtain 1 >0 from (40) and (41) can be represented

as follows:
2 T
Q=—"-T7T-G'G>0.
Mc

is obtained.
Therefore, we obtain 0 <ne <2/(A,,,, ). This completes

Here, using Lemma 3, wo <2/(A,..)

the proof of the theorem.
4. SIMULATION RESULTS

In this section, we apply the proposed predictive
control algorithm to two chaotic systems. Firstly, the
Duffing system, which is the continuous-time chaotic
system, is considered. Secondly, we consider the
Hé non system, which is the discrete-time chaotic
system. And also, in order to evaluate the performance
of the proposed SRWNN based predictive control
scheme, we compare with the WNN based predictive
control scheme for each chaotic system.

4.1. The Duffing system

This Subsection considers the Duffing system,
which is the representative continuous-time chaotic
system. The state equation of the Duffing system is

X X2
{. } s , (42)
X ax; —X{ —ayxy +beos(wt) +u

where gy =1.1, a, =04, b=2.1 and w=1.8. The
tracking control objective for the Duffing system is to
follow the unstable periodic solution of the Duffing
system. As the value of b varies, the Duffing system
may have either a chaotic or a periodic solution. The
reference signal is defined as one periodic solution in
the case of b =2.3. In this simulation, we choose the
initial state of the Duffing system as (1,0) and the
learning rates for the SRWNN based identifier are
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chosen based on Remark 1. And also, the learning rate

for the control signal is chosen as 0.006, which is 3 ; :
based on Theorem 5. T
The simulation environments of both the SRWNN 2 o OO
based predictive controller and the WNN based E i gt o q'
predictive controller are shown in Table 1. Fig. 4 e ;“;'~ %\‘\:’ :‘ ‘l,, I : X e o
compares the control results using the SRWNN and 0‘}‘!1“‘ Hy S " L
the WNN. The mean-squared error(MSE)s of the I S TR
SRWNN based predictive control and the WNN based _1} b ‘ g A et
predictive control are tabulated in Table 2, and the H l L ‘ PR Pt P
control errors are compared in Fig. 5. From the results PR ' l(v o i ‘ povt ' 4
of Table 2, we can observe that the SRWNN based ; i ’ SEEER RN | i \‘
predictive control shows better performance compared —3{ ]
with the WNN based predictive control. Note that the 6 10 % m 40 s & 0 8 9 100
network structure of the proposed SRWNN is simpler time(sec)
than that of the WNN as shown in Table 1. (a)

4.2. The H é non system

. .

f | ; L ; o f"““

We consider the H é non system, which is the | ,‘r';" f“ W ‘"\ AR ﬁ

. . . . G [ Ty i

discrete-time chaotic system. The state equation of the 3% '“\ hf"* .: i o iy T y' | l

H ¢ non system is PTIRAE IET B ,'_,‘”“ I‘ll‘yi‘, o

L S I L bty

) N A O A AT TTERI S

xi(n+1) _ Xy (n)+1-axj (n) (43) 8 ol 'IW."’ !;!Wf | !I:.H | 1»;““

x(n+1) bxy(n)+u ’ ) r!'l! \‘” gll:ii i;lj!:‘ S 1| |'i | | ‘

ALl TECERE AR ]""l 1 O

[ ;f TR :w ‘llt . Ca }

AU ' AR i ! IR I

where a=1.4, 5=0.3. The goal for control of the G § i: ;%f"" S ' l”". v o

. . . L A T P O T A T o

H é non system is to regulate the chaotic orbit to the 3l ; \' *l]i; By ! i lj
desired signal. In this simulation, we define the [ 1 o RN ! Lyt by

4 | \ Yo L [

reference signal as [0,—1] and choose the initial state S
0 10 2 30 40 5 60 70 80 90 100

of the H é non system as (1,0). The learning rates for fime(sec)
the SRWNN based identifier arec chosen based on (b)

Remark 1 and the learning rate for the control signal is

chosen as 0.2, which is based on Theorem 5. Fig. 4. The predictive control results for the Duffing

. . . . system. (solid line: reference signal, dotted
Table 1. Comparison of the simulation environments line: SRWNN result. and dash-dotted line:

for the Duffing system. WNN result) (a) state x; (b) state x, .
Simulation Condition SRWNN WNN
No. of wavelons 12 20 ,
T
No. of past inputs 2 2 ~ 1(
No. of past states 2 2 s 1 Lot s
No. of prediction steps 3 3 s 0“ “V@“/}ﬁf”f"”‘f PAPSAPAAS A Sy
Sampling rate 0.05 0.05 g A
ID learning rate Adaptive 0.02 zL ) . ]
Control learning rate 0.006 0.02 o 0 2%« ﬁm:(gec) % 0 s e
[teration 2000 2000 2 e e
o
Table 2. Comparison of the simulation results for the 5 % : .
Duffing system. : 0?“,\, t,‘ﬁ WW P}”W W\ Y AR AR
Performance SRWNN | WNN 5
ID MSE (x1) 0.002 0.069 O
0 10 20 30 40 50 60 70 80 90 100
IDMSE (x2) 0.005 0.030 time(sec)
Control MSE (x1) 0.008 0.089 Fig. 5. The control errors of the SRWNN(solid line)
Control MSE (x2) 0.038 0.058 and WNN(dotted line).
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Table 3. Comparison of the simulation environments
for the H é non system.

Simulation Condition SRWNN WNN
No. of wavelons 9 20
No. of past inputs 1 2
No. of past states 2 2
No. of prediction steps 3 3
Sampling rate 0.05 0.05
ID learning rate Adaptive 0.1
Control learning rate 0.02 0.2
[teration 2000 2000

Table 4. Comparison of the simulation results for the

H ¢ non system.

Performance SRWNN WNN
ID MSE (x1) 0.0015 0.0024
IDMSE (x2) 0.0005 0.0005
Control MSE (x1) 0.308e-32 0.519e-19
Control MSE (x2) 0.000e-32 0.501e-19
15 -
1 L
[] 5 ’ |
= 0F
05t -
qF ]
150 20 w0 600 80 1000 1200 1400 1600 10 2000
15 - —
1 L
0sf .
¥ of i
o5k 4
1k
ST 20 40 &0 00 1000 1200 1400 1600 1800 2000
step
(a)
15 __
1} .
05k i
= 0 ";}‘\
ast
Ak i
150 0 @0 B0 B0 1000 1200 1400 1600 1a00 200K
15 —
1F _
05t
N oof
o5f —
AN
8200 a0 b00 600 1000 1200 1400 1600 1800 200
step
(b)

Fig. 6. The predictive control results for the Hé non

system.

The simulation environments of both the SRWNN
based predictive control and the WNN based predictive
control are shown in Table 3, and the mean-squared
error(MSE)s of the SRWNN based predictive control
and the WNN based predictive control are tabulated in
Table 4. In this simulation, in order to maximize the
performance for the identification and control of the
Hé non system, we select experimentally the number
of the past input and the past state for the SRWNN and
the WNN respectively. In Table 3, the number of the
past input of the SRWNN is less than that of the WNN.
This means that even if the network structure of the
proposed SRWNN is simpler than that of the WNN, the
performance of identification and control of the
SRWNN is better than that of the WNN (see Table 4).
In Table 4, the ID MSEs denotes the MSEs between the
output of the H é non system and the output of SRWNN
after the total samples and the control MSEs denotes
the MSEs between the output of the Hé non system
and the reference signal after 200 samples. Fig. 6
compares the control results using the SRWNN and the
WNN. From the results of Fig. 6, we can observe that
the SRWNN based controller converges faster than the
WNN based controller.

5. CONCLUSIONS

The SRWNN, which is a new network structure,
based predictive control method has been proposed
for chaotic systems. Since the SRWNN has a good
ability to store the past information of the wavelon, it
can be used as the model predictor of the predictive
control scheme. Using the Lyapunov approach, the
convergence theorems for both SRWNN predictor and
controller are proven, and the condition of optimal
learning rates was also established. Finally, the
proposed predictive control scheme was applied to
chaotic systems, the Duffing system and the Hé non
system. Simulation results have shown that the
SRWNN has three advantages. Firstly, the SRWNN
has the simpler network structure than the WNN.
Secondly, the SRWNN predictor can predict
accurately complex chaotic systems. Thirdly, the
proposed controller has an on-line adapting ability for
controlling complex chaotic systems.

APPENDIX
In order to compute simply the jacobian matrix (34),
we define G as follows:

an 0 0 -+ 0

gy En 0o - 0
G=|: : - : :

L&v1 8v2 8w Ewv nun
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Each elements of the Jacobian matrix G

computed by the following procedure.

A. First row

_ay1(n+1)

B Ju(n)

_ Oy (n+]) 0x

T ox m
N, w; oo, (x) 0x,

Z:djk ke e }6u(n)

6y,(n+1)_

- Su(n+1) -

11

N;

12

_ oy, (n+l)
ou(n+N-1)

1N >

where x=[y,(n) -+ y,(n—N, +1) u(n) -

respectively.

B. Second row

_ Oy, (n+2)
2 ou(n)
_O0y,(n+2) 0Ox
ox Ju(n)
w, 00 ,(x) Ox,
+ak
1djk 0z, Su(n)

0y,(n+2) 0x
ox Ou(n+1)

w, 6CD ()

Ox,

u(n—Ne)]
is the inputs of the SRWNN. N =N _+N,+1]
denotes the total number of the inputs. And also, N,
and N, indicate the number of the past SRWNN
outputs and the past control input state variables,

0z,  '|Ou(n+l)

0y, (n+2)
S = =
Oou(n+ N -1)

3

where x=[y,(n+1) -

(=N, +2) w(n+1) u(n)

u(n—N, +1)].

N th row

_dy,(n+N)
MU Bu(n)
_0y,(n+N) ox
 0x  du(n)

w; o, (X) ox,
Zdﬂ( 0z, e J@u(n)

k=11 j=1

_ Oy, (n+N)
Y Bu(n+1)
0y, (n+N) ox
©0x  Bu(n+))
o W 6(I> ;(x) dx,
e ]6u(n+1)

i

k=1

j=1 jk ij

_ 0y,(n+N)

" du(n+N-1)

_0y,(n+N) 0x

~ 6x  ou(m+N-1

Z:w oD, (x)+ak1 0x, ,
id, 0 du(n+N -1)

NN

Z

k=

jk

where x=[y,(n+N—1) o Y, (n=N_+N) u(n+

(1]

(2]

(3]

(4]

N-1) - u(n-N,+N-1].
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