• Title/Summary/Keyword: neural network.

Search Result 11,766, Processing Time 0.038 seconds

An Automatic Diagnosis System for Hepatitis Diseases Based on Genetic Wavelet Kernel Extreme Learning Machine

  • Avci, Derya
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.4
    • /
    • pp.993-1002
    • /
    • 2016
  • Hepatitis is a major public health problem all around the world. This paper proposes an automatic disease diagnosis system for hepatitis based on Genetic Algorithm (GA) Wavelet Kernel (WK) Extreme Learning Machines (ELM). The classifier used in this paper is single layer neural network (SLNN) and it is trained by ELM learning method. The hepatitis disease datasets are obtained from UCI machine learning database. In Wavelet Kernel Extreme Learning Machine (WK-ELM) structure, there are three adjustable parameters of wavelet kernel. These parameters and the numbers of hidden neurons play a major role in the performance of ELM. Therefore, values of these parameters and numbers of hidden neurons should be tuned carefully based on the solved problem. In this study, the optimum values of these parameters and the numbers of hidden neurons of ELM were obtained by using Genetic Algorithm (GA). The performance of proposed GA-WK-ELM method is evaluated using statical methods such as classification accuracy, sensitivity and specivity analysis and ROC curves. The results of the proposed GA-WK-ELM method are compared with the results of the previous hepatitis disease studies using same database as well as different database. When previous studies are investigated, it is clearly seen that the high classification accuracies have been obtained in case of reducing the feature vector to low dimension. However, proposed GA-WK-ELM method gives satisfactory results without reducing the feature vector. The calculated highest classification accuracy of proposed GA-WK-ELM method is found as 96.642 %.

CONCEPTUAL DESIGN OF THE SODIUM-COOLED FAST REACTOR KALIMER-600

  • Hahn, Do-Hee;Kim, Yeong-Il;Lee, Chan-Bock;Kim, Seong-O;Lee, Jae-Han;Lee, Yong-Bum;Kim, Byung-Ho;Jeong, Hae-Yong
    • Nuclear Engineering and Technology
    • /
    • v.39 no.3
    • /
    • pp.193-206
    • /
    • 2007
  • The Korea Atomic Energy Research Institute has developed an advanced fast reactor concept, KALIMER-600, which satisfies the Generation IV reactor design goals of sustainability, economics, safety, and proliferation resistance. The concept enables an efficient utilization of uranium resources and a reduction of the radioactive waste. The core design has been developed with a strong emphasis on proliferation resistance by adopting a single enrichment fuel without blanket assemblies. In addition, a passive residual heat removal system, shortened intermediate heat-transport system piping and seismic isolation have been realized in the reactor system design as enhancements to its safety and economics. The inherent safety characteristics of the KALIMER-600 design have been confirmed by a safety analysis of its bounding events. Research on important thermal-hydraulic phenomena and sensing technologies were performed to support the design study. The integrity of the reactor head against creep fatigue was confirmed using a CFD method, and a model for density-wave instability in a helical-coiled steam generator was developed. Gas entrainment on an agitating pool surface was investigated and an experimental correlation on a critical entrainment condition was obtained. An experimental study on sodium-water reactions was also performed to validate the developed SELPSTA code, which predicts the data accurately. An acoustic leak detection method utilizing a neural network and signal processing units were developed and applied successfully for the detection of a signal up to a noise level of -20 dB. Waveguide sensor visualization technology is being developed to inspect the reactor internals and fuel subassemblies. These research and developmental efforts contribute significantly to enhance the safety, economics, and efficiency of the KALIMER-600 design concept.

Development and Application of Total Maximum Daily Loads Simulation System Using Nonpoint Source Pollution Model (비점원오염모델을 이용한 오염총량모의시스템의 개발 및 적용)

  • Kang, Moon-Seong;Park, Seung-Woo
    • Journal of Korea Water Resources Association
    • /
    • v.36 no.1
    • /
    • pp.117-128
    • /
    • 2003
  • The objectives of this study are to develop the total maximum daily loads simulation system, TOLOS that is capable of estimating annual nonpoint source pollution from small watersheds, to monitor the hydrology and water quality of the Balkan HP#6 watershed, and to validate TOLOS with the field data. TOLOS consists of three subsystems: the input data processor based on a geographic information system, the models, and the post processor. Land use pattern at the tested watershed was classified from the Landsat TM data using the artificial neutral network model that adopts an error back propagation algorithm. Paddy field components were added to SWAT model to simulate water balance at irrigated paddy blocks. SWAT model parameters were obtained from the GIS data base, and additional parameters calibrated with field data. TOLOS was then tested with ungauged conditions. The simulated runoff was reasonably good as compared with the observed data. And simulated water quality parameters appear to be reasonably comparable to the field data.

Analysis of Hydrologic data using Poincare Section and Neural Network (Poincare Section과 신경망 기법을 이용한 수문자료 분석)

  • La, Chang-Jin;Kim, Hung-Soo;Kim, Joong-Hoon;Kim, Eung-Seok
    • Journal of Korea Water Resources Association
    • /
    • v.35 no.6
    • /
    • pp.817-826
    • /
    • 2002
  • Many researchers have been tried to forecast the future as analyzing data characteristics and the forecasting methodology may be divided into two cases of deterministic and stochastic techniques. However, the understanding data characteristics may be very important for model construction and forecasting. In the sense of this view, recently, the deterministic method known as nonlinear dynamics has been studied in many fields. This study uses the geometrical methodology suggested by Poincare for analyzing nonlinear dynamic systems and we apply the methodology to understand the characteristics of known systems and hydrologic data, and determines the possibility of forecasting according to the data characteristics. Say, we try to understand the data characteristics as constructing Poincare map by using Poincare section and could conjecture that the data sets are linear or nonlinear and an appropriate model.

Systolic Array Simulator Construction for the Back-propagation ANN (역전파 ANN의 시스톨릭 어레이를 위한 시뮬레이터 개발)

  • 박기현;전상윤
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.5 no.3
    • /
    • pp.117-124
    • /
    • 2000
  • A systolic array is a parallel processing system which consists of processing elements of basic computation capabilities, connected with regular and local communication lines. It has been known that a systolic array is on of effective systems to solve complicated communication problems occurred between densely connected neurons on ANN(Artificial Neural Network). In this paper, a systolic array simulator for the back-propagation ANN, which automatically constructs the proper systolic array for a given number of neurons of the ANN, is designed and constructed. With animation techniques of the simulators, it is easy for users to be able to examine the execution of the back-propagation algorithm on the designed systolic array step by step. Moreover the simulator can perform forward and backward operations of the back-propagation algorithm either in sequence or in parallel on the designed systolic array. Parallel execution can be performed by feeding continuous input patterns and by executing bidirectional propagations on all of processing elements of a systolic array at the same time.

  • PDF

Incremental Clustering Algorithm by Modulating Vigilance Parameter Dynamically (경계변수 값의 동적인 변경을 이용한 점층적 클러스터링 알고리즘)

  • 신광철;한상용
    • Journal of KIISE:Software and Applications
    • /
    • v.30 no.11
    • /
    • pp.1072-1079
    • /
    • 2003
  • This study is purported for suggesting a new clustering algorithm that enables incremental categorization of numerous documents. The suggested algorithm adopts the natures of the spherical k-means algorithm, which clusters a mass amount of high-dimensional documents, and the fuzzy ART(adaptive resonance theory) neural network, which performs clustering incrementally. In short, the suggested algorithm is a combination of the spherical k-means vector space model and concept vector and fuzzy ART vigilance parameter. The new algorithm not only supports incremental clustering and automatically sets the appropriate number of clusters, but also solves the current problems of overfitting caused by outlier and noise. Additionally, concerning the objective function value, which measures the cluster's coherence that is used to evaluate the quality of produced clusters, tests on the CLASSIC3 data set showed that the newly suggested algorithm works better than the spherical k-means by 8.04% in average.

A Judgment System for Intelligent Movement Using Soft Computing (소프트 컴퓨팅에 의한 지능형 주행 판단 시스템)

  • Choi, Woo-Kyung;Seo, Jae-Yong;Kim, Seong-Hyun;Yu, Sung-Wook;Jeon, Hong-Tae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.16 no.5
    • /
    • pp.544-549
    • /
    • 2006
  • This research is to introduce about Judgment System for Intelligent Movement(JSIM) that can perform assistance work of human brain. JSIM can order autonomous command and also it can be directly controlled by user. This research assumes that control object is limited to Mobile Robot(MR) Mobile robot offers image and ultrasonic sensor information to user carrying JSIM and it performs guide to user. JSIM having PDA and Sensor-box controls velocity and direction of the mobile robot by soft-computing method that inputs user's command and information that is obtained to mobile robot. Also it controls mobile robot to achieve various movement. This paper introduces wearable JSIM that communicates with around devices and that can do intelligent judgment. To verify the possibility of the proposed system, in real environment, the simulation of control and application problem lot mobile robot will be introduced. Intelligent algorithm in the proposed system is generated by mixed hierarchical fuzzy and neural network.

Electroencephalogram-based Driver Drowsiness Detection System Using AR Coefficients and SVM (AR계수와 SVM을 이용한 뇌파 기반 운전자의 졸음 감지 시스템)

  • Han, Hyungseob;Chong, Uipil
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.6
    • /
    • pp.768-773
    • /
    • 2012
  • One of the main reasons for serious road accidents is driving while drowsy. For this reason, drowsiness detection and warning system for drivers has recently become a very important issue. Monitoring physiological signals provides the possibility of detecting features of drowsiness and fatigue of drivers. One of the effective signals is to measure electroencephalogram (EEG) signals and electrooculogram (EOG) signals. The aim of this study is to extract drowsiness-related features from a set of EEG signals and to classify the features into three states: alertness, drowsiness, sleepiness. This paper proposes a drowsiness detection system using Linear Predictive Coding (LPC) coefficients and Support Vector Machine (SVM). Samples of EEG data from each predefined state were used to train the SVM program by using the proposed feature extraction algorithms. The trained SVM program was tested on unclassified EEG data and subsequently reviewed according to manual classification. The classification rate of the proposed system is over 96.5% for only very small number of samples (250ms, 64 samples). Therefore, it can be applied to real driving incident situation that can occur for a split second.

Selection Method of Fuzzy Partitions in Fuzzy Rule-Based Classification Systems (퍼지 규칙기반 분류시스템에서 퍼지 분할의 선택방법)

  • Son, Chang-S.;Chung, Hwan-M.;Kwon, Soon-H.
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.3
    • /
    • pp.360-366
    • /
    • 2008
  • The initial fuzzy partitions in fuzzy rule-based classification systems are determined by considering the domain region of each attribute with the given data, and the optimal classification boundaries within the fuzzy partitions can be discovered by tuning their parameters using various learning processes such as neural network, genetic algorithm, and so on. In this paper, we propose a selection method for fuzzy partition based on statistical information to maximize the performance of pattern classification without learning processes where statistical information is used to extract the uncertainty regions (i.e., the regions which the classification boundaries in pattern classification problems are determined) in each input attribute from the numerical data. Moreover the methods for extracting the candidate rules which are associated with the partition intervals generated by statistical information and for minimizing the coupling problem between the candidate rules are additionally discussed. In order to show the effectiveness of the proposed method, we compared the classification accuracy of the proposed with those of conventional methods on the IRIS and New Thyroid Cancer data. From experimental results, we can confirm the fact that the proposed method only considering statistical information of the numerical patterns provides equal to or better classification accuracy than that of the conventional methods.

An Optimal System Configuration Using Intelligent Agent on Ubiquitous Environment (유비쿼터스 환경에서 지능 에이전트를 이용한 최적 시스템 구성)

  • Kim Doo-Ywan;Roh Eun-Young;Chung Hwan-Mook
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.5
    • /
    • pp.567-572
    • /
    • 2005
  • Recently, owing to miniaturization of computer and popularization of internet, ubiquitous computing is attracting considerable attention. In ubiquitous environment, user can receive desired information service anywhere, any time. With the advent of ubiquitous age through popularization of internet, it becomes important how to provide user with ubiquitous environment, and what and how to provide to user. In this paper, method to automatically select device most suitable for user in ubiquitous environment is offered. search agents search peripherals, make a list by function, and transmit to serve. Serve learn the transmitted information through intelligent system. If user input information in the form of linguistic according to the list, serve select device suitable for work environment, and compose the system through IP address. This was realize through practical example, experimented and confirmed.