• Title/Summary/Keyword: neural network.

Search Result 11,766, Processing Time 0.039 seconds

Comparative Study of PI, FNN and ALM-FNN for High Control of Induction Motor Drive (유도전동기 드라이브의 고성능 제어를 위한 PI, FNN 및 ALM-FNN 제어기의 비교연구)

  • Kang, Sung-Jun;Ko, Jae-Sub;Choi, Jung-Sik;Jang, Mi-Geum;Back, Jung-Woo;Chung, Dong-Hwa
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.408-411
    • /
    • 2009
  • In this paper, conventional PI, fuzzy neural network(FNN) and adaptive teaming mechanism(ALM)-FNN for rotor field oriented controlled(RFOC) induction motor are studied comparatively. The widely used control theory based design of PI family controllers fails to perform satisfactorily under parameter variation nonlinear or load disturbance. In high performance applications, it is useful to automatically extract the complex relation that represent the drive behaviour. The use of learning through example algorithms can be a powerful tool for automatic modelling variable speed drives. They can automatically extract a functional relationship representative of the drive behavior. These methods present some advantages over the classical ones since they do not rely on the precise knowledge of mathematical models and parameters. Comparative study of PI, FNN and ALM-FNN are carried out from various aspects which is dynamic performance, steady-state accuracy, parameter robustness and complementation etc. To have a clear view of the three techniques, a RFOC system based on a three level neutral point clamped inverter-fed induction motor drive is established in this paper. Each of the three control technique: PI, FNN and ALM-FNN, are used in the outer loops for rotor speed. The merit and drawbacks of each method are summarized in the conclusion part, which may a guideline for industry application.

  • PDF

An Intelligent Control Method for Optimal Operation of a Fuel Cell Power System (연료전지 발전 시스템의 최적운전을 위한 지능제어 기법)

  • Hwang, Jin-Kwon;Choi, Tae-Il
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.12
    • /
    • pp.154-161
    • /
    • 2009
  • A fuel cell power plant is a very complex system which has various control loops with some non-linearity. For control of a fuel cell power plant, dynamic models of fuel cell stacks have been developed and simplified process flow diagrams of a fuel cell power plant has been presented. Using such a model of a Molten Carbonate Fuel Cell (MCFC) power plant, this paper deals with development of an intelligent setpoint reference governor (I-SRG) to find the optimal setpoints and feed forward control inputs for the plant power demand. The I-SRG is implemented with neural network by using Particle Swarm Optimization (PSO) algorithm based on system constraints and performance objectives. The feasibility of the I-SRG is shown through simulation of an MCFC power plant for tracking control of its power demand.

Fuzzy Controller Design of PC Based for Solar Tracking System (태양 추적시스템을 위한 PC 기반의 퍼지제어기 설계)

  • Chung, Dong-Hwa;Choi, Jung-Sik;Ko, Jae-Sub
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.5
    • /
    • pp.86-94
    • /
    • 2008
  • In this paper proposed the solar tracking system to use a fuzzy based on PC in of order to increase an output of the PV(Photovoltaic) array. The solar tracking system operated two DC motors driving by signal of photo sensor. The control of dual axes is not an easy task due to nonlinear dynamics and unavailability of the parameters. Recently, artificial intelligent control of the fuzzy control, neural-network and genetic algorithm etc. have been studies. The fuzzy control made a nonlinear dynamics to well perform and had a robust and highly efficient characteristic about a parameter variable as well as a nonlinear characteristic. Hence the fuzzy control was used to perform the tracking system after comparing with error values of setting-up, nonlinear altitude and azimuth. In this paper designed a fuzzy controller for improving output of PV array and evaluated comparison with efficient of conventional PI controller. The data which were obtained by experiment were able to show a validity of the proposed controller.

Real-time Hand Gesture Recognition System based on Vision for Intelligent Robot Control (지능로봇 제어를 위한 비전기반 실시간 수신호 인식 시스템)

  • Yang, Tae-Kyu;Seo, Yong-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.10
    • /
    • pp.2180-2188
    • /
    • 2009
  • This paper is study on real-time hand gesture recognition system based on vision for intelligent robot control. We are proposed a recognition system using PCA and BP algorithm. Recognition of hand gestures consists of two steps which are preprocessing step using PCA algorithm and classification step using BP algorithm. The PCA algorithm is a technique used to reduce multidimensional data sets to lower dimensions for effective analysis. In our simulation, the PCA is applied to calculate feature projection vectors for the image of a given hand. The BP algorithm is capable of doing parallel distributed processing and expedite processing since it take parallel structure. The BP algorithm recognized in real time hand gestures by self learning of trained eigen hand gesture. The proposed PCA and BP algorithm show improvement on the recognition compared to PCA algorithm.

The Sentence Similarity Measure Using Deep-Learning and Char2Vec (딥러닝과 Char2Vec을 이용한 문장 유사도 판별)

  • Lim, Geun-Young;Cho, Young-Bok
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.10
    • /
    • pp.1300-1306
    • /
    • 2018
  • The purpose of this study is to see possibility of Char2Vec as alternative of Word2Vec that most famous word embedding model in Sentence Similarity Measure Problem by Deep-Learning. In experiment, we used the Siamese Ma-LSTM recurrent neural network architecture for measure similarity two random sentences. Siamese Ma-LSTM model was implemented with tensorflow. We train each model with 200 epoch on gpu environment and it took about 20 hours. Then we compared Word2Vec based model training result with Char2Vec based model training result. as a result, model of based with Char2Vec that initialized random weight record 75.1% validation dataset accuracy and model of based with Word2Vec that pretrained with 3 million words and phrase record 71.6% validation dataset accuracy. so Char2Vec is suitable alternate of Word2Vec to optimize high system memory requirements problem.

Rotation and Scale Invariant Face Detection Using Log-polar Mapping and Face Features (Log-polar변환과 얼굴특징추출을 이용한 크기 및 회전불변 얼굴인식)

  • Go Gi-Young;Kim Doo-Young
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.6 no.1
    • /
    • pp.15-22
    • /
    • 2005
  • In this paper, we propose a face recognition system by using the CCD color image. We first get the face candidate image by using YCbCr color model and adaptive skin color information. And we use it initial curve of active contour model to extract face region. We use the Eye map and mouth map using color information for extracting facial feature from the face image. To obtain center point of Log-polar image, we use extracted facial feature from the face image. In order to obtain feature vectors, we use extracted coefficients from DCT and wavelet transform. To show the validity of the proposed method, we performed a face recognition using neural network with BP learning algorithm. Experimental results show that the proposed method is robuster with higher recogntion rate than the conventional method for the rotation and scale variant.

  • PDF

Finite Element Model Updating of Simple Beam Considering Boundary Conditions (경계조건을 고려한 단순보의 유한요소모델개선)

  • Kim, Se-Hoon;Park, Young-Soo;Kim, Nam-Gyu;Lee, Jong-Jae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.2
    • /
    • pp.76-82
    • /
    • 2018
  • In this present study, in order to update the finite element model considering the boundary conditions, a method has been proposed. The conventional finite element model updating method, updates the finite element model by using the dynamic characteristics (natural frequency, mode shape) which can be estimated from the ambient vibration test. Therefore, prediction of the static response of an actual structure is difficult. Furthermore, accurate estimation of the physical properties is relatively hard. A novel method has been proposed to overcome the limitations of conventional method. Initially, the proposed method estimates the rotational spring constant of a finite element model using the deflection of structure and the rotational displacement of support measurements. The final updated finite element model is constructed by estimating the material properties of the structure using the finite element model with updated rotational spring constant and the dynamic characteristics of the structure. The proposed finite element model updating method is validated through numerical simulation and compared with the conventional finite element model updating method.

Ensemble Classifier with Negatively Correlated Features for Cancer Classification (암 분류를 위한 음의 상관관계 특징을 이용한 앙상블 분류기)

  • 원홍희;조성배
    • Journal of KIISE:Software and Applications
    • /
    • v.30 no.12
    • /
    • pp.1124-1134
    • /
    • 2003
  • The development of microarray technology has supplied a large volume of data to many fields. In particular, it has been applied to prediction and diagnosis of cancer, so that it expectedly helps us to exactly predict and diagnose cancer. It is essential to efficiently analyze DNA microarray data because the amount of DNA microarray data is usually very large. Since accurate classification of cancer is very important issue for treatment of cancer, it is desirable to make a decision by combining the results of various expert classifiers rather than by depending on the result of only one classifier. Generally combining classifiers gives high performance and high confidence. In spite of many advantages of ensemble classifiers, ensemble with mutually error-correlated classifiers has a limit in the performance. In this paper, we propose the ensemble of neural network classifiers learned from negatively correlated features using three benchmark datasets to precisely classify cancer, and systematically evaluate the performances of the proposed method. Experimental results show that the ensemble classifier with negatively correlated features produces the best recognition rate on the three benchmark datasets.

Development of u-Health Care System for Prompt Perception of Emergencies (응급상황의 신속한 감지를 위한 u-Health 시스템 개발에 관한 연구)

  • Jang, Dong-Wook;Sun, Bok-Keun;Sohn, Surg-Won;Han, Kwang-Rok
    • The KIPS Transactions:PartB
    • /
    • v.14B no.6
    • /
    • pp.401-406
    • /
    • 2007
  • This study discusses the development of a u-Health care system that can detect quickly and cope actively with emergent situations of chronic disease patients who lead everyday life. If a patient's emergent situation is detected by personal health care host(PHCH), which is composed of acceleration and vibration sensors, GPS, and CDMA communication module, a text message on the patient's current location is transmitted to the hospital and the guardian's mobile terminal so that they can cope with the situation immediately. Especially, the system analyzes data from sensors by using neural network and determines emergent situations such as syncope and convulsion promptly. The exact location of patients can also be found in the electronic map by using GPS information. The experiments show that this system is very effective to find emergencies promptly for chronic disease patients who cannot take care of themselves and it is expected to save many lives.

Feature Extraction for Content-based Image Retrievaland Implementation of Image Database Retrieval System (내용기반 영상 검색을 위한 특징 추출 및 영상 데이터베이스 검색 시스템 구현)

  • Kim, Jin-Ah;Lee, Seung-Hoon;Woo, Yong-Tae;Jung, Sung-Hwan
    • The Transactions of the Korea Information Processing Society
    • /
    • v.5 no.8
    • /
    • pp.1951-1959
    • /
    • 1998
  • In this paper, we propose an efficient feature extaetion method for content-based approach and implement an image retrieval system in the Oracle database. First, we estract color feature by the modified Stricker's method from input images, and this color feature and ART2 neural network are used for the rough classification of images. Next, we extract texture feature using wavelet transform, and finally exeute the detailed classification on the rough classified images from the previous step. Exsing the proposed feature extraction methods, we implement a useful image retrieval system by Extended SQI, statement on the relational database. The proposed system is implemented on the Oracle DBMS, and in the experimental results with 200 sample images, it shows the retrieval rate 90% and 81% in Recall and Precision, respectively.

  • PDF