• Title/Summary/Keyword: neural network.

Search Result 11,767, Processing Time 0.037 seconds

GMDH-based prediction of shear strength of FRP-RC beams with and without stirrups

  • Kaveh, Ali;Bakhshpoori, Taha;Hamze-Ziabari, Seyed Mahmood
    • Computers and Concrete
    • /
    • v.22 no.2
    • /
    • pp.197-207
    • /
    • 2018
  • In the present study, group method of data handling networks (GMDH) are adopted and evaluated for shear strength prediction of both FRP-reinforced concrete members with and without stirrups. Input parameters considered for the GMDH are altogether 12 influential geometrical and mechanical parameters. Two available and very recently collected comprehensive datasets containing 112 and 175 data samples are used to develop new models for two cases with and without shear reinforcement, respectively. The proposed GMDH models are compared with several codes of practice. An artificial neural network (ANN) model and an ANFIS based model are also developed using the same databases to further assessment of GMDH. The accuracy of the developed models is evaluated by statistical error parameters. The results show that the GMDH outperforms other models and successfully can be used as a practical and effective tool for shear strength prediction of members without stirrups ($R^2=0.94$) and with stirrups ($R^2=0.95$). Furthermore, the relative importance and influence of input parameters in the prediction of shear capacity of reinforced concrete members are evaluated through parametric and sensitivity analyses.

A novel SARMA-ANN hybrid model for global solar radiation forecasting

  • Srivastava, Rachit;Tiwaria, A.N.;Giri, V.K.
    • Advances in Energy Research
    • /
    • v.6 no.2
    • /
    • pp.131-143
    • /
    • 2019
  • Global Solar Radiation (GSR) is the key element for performance estimation of any Solar Power Plant (SPP). Its forecasting may help in estimation of power production from a SPP well in advance, and may also render help in optimal use of this power. Seasonal Auto-Regressive Moving Average (SARMA) and Artificial Neural Network (ANN) models are combined in order to develop a hybrid model (SARMA-ANN) conceiving the characteristics of both linear and non-linear prediction models. This developed model has been used for prediction of GSR at Gorakhpur, situated in the northern region of India. The proposed model is beneficial for the univariate forecasting. Along with this model, we have also used Auto-Regressive Moving Average (ARMA), SARMA, ANN based models for 1 - 6 day-ahead forecasting of GSR on hourly basis. It has been found that the proposed model presents least RMSE (Root Mean Square Error) and produces best forecasting results among all the models considered in the present study. As an application, the comparison between the forecasted one and the energy produced by the grid connected PV plant installed on the parking stands of the University shows the superiority of the proposed model.

A gradient boosting regression based approach for energy consumption prediction in buildings

  • Bataineh, Ali S. Al
    • Advances in Energy Research
    • /
    • v.6 no.2
    • /
    • pp.91-101
    • /
    • 2019
  • This paper proposes an efficient data-driven approach to build models for predicting energy consumption in buildings. Data used in this research is collected by installing humidity and temperature sensors at different locations in a building. In addition to this, weather data from nearby weather station is also included in the dataset to study the impact of weather conditions on energy consumption. One of the main emphasize of this research is to make feature selection independent of domain knowledge. Therefore, to extract useful features from data, two different approaches are tested: one is feature selection through principal component analysis and second is relative importance-based feature selection in original domain. The regression model used in this research is gradient boosting regression and its optimal parameters are chosen through a two staged coarse-fine search approach. In order to evaluate the performance of model, different performance evaluation metrics like r2-score and root mean squared error are used. Results have shown that best performance is achieved, when relative importance-based feature selection is used with gradient boosting regressor. Results of proposed technique has also outperformed the results of support vector machines and neural network-based approaches tested on the same dataset.

Thermal Error Modeling of a Horizontal Machining Center Using the Fuzzy Logic Strategy (퍼지논리를 이용한 수평 머시닝 센터의 열변형 오차 모델링)

  • 이재하;양승한
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1999.05a
    • /
    • pp.75-80
    • /
    • 1999
  • As current manufacturing processes require high spindle speed and precise machining, increasing accuracy by reducing volumetric errors of the machine itself, particularly thermal errors, is very important. Thermal errors can be estimated by many empirical models, for example, an FEM model, a neural network model, a linear regression model, an engineering judgment model etc. This paper discusses to make a modeling of thermal errors efficiently through backward elimination and fuzzy logic strategy. The model of a thermal error using fuzzy logic strategy overcome limitation of accuracy in the linear regression model or the engineering judgment model. And this model is compared with the engineering judgment model. It is not necessary complex process such like multi-regression analysis of the engineering judgment model. A fuzzy model does not need to know the characteristics of the plant, and the parameters of the model can be mathematically calculated. Like a regression model, this model can be applied to any machine, but it delivers greater accuracy and robustness.

  • PDF

A Study on the Tool Wear and Surface Roughness in Cutting Processes for a Neural-Network-Based Remote Monitoring system (신경회로망을 이용한 원격모니터링을 위한 가공공정의 공구마모와 표면조도에 관한 연구)

  • Kwon, Jung-Hee;Jang, U-Il;Jeong, Seong-Hyun;Kim, Do-Un;Hong, Dae-Sun
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.1
    • /
    • pp.33-39
    • /
    • 2012
  • The tool wear and failure in automatic production system directly influences the quality and productivity of a product, thus it is essential to monitor the tool state in real time. For such purpose, an ART2-based remote monitoring system has been developed to predict the appropriate tool change time in accordance with the tool wear, and this study aims to experimently find the relationship between the tool wear and the monitoring signals in cutting processes. Also, the roughness of workpiece according to the wool wear is examined. Here, the tool wear is indirectly monitored by signals from a vibration senor attached to a machining center. and the wear dimension is measured by a microscope at the start, midways and the end of a cutting process. A series of experiments are carried out with various feedrates and spindle speeds, and the results show that the sensor signal properly represents the degree of wear of a tool being used, and the roughnesses measured has direct relation with the tool wear dimension. Thus, it is concluded that the monitoring signals from the vibration sensor can be used as a useful measure for the tool wear monitoring.

A Study on Approximation Model for Optimal Predicting Model of Industrial Accidents (산업재해의 최적 예측모형을 위한 근사모형에 관한 연구)

  • Leem, Young-Moon;Ryu, Chang-Hyun
    • Journal of the Korea Safety Management & Science
    • /
    • v.8 no.3
    • /
    • pp.1-9
    • /
    • 2006
  • Recently data mining techniques have been used for analysis and classification of data related to industrial accidents. The main objective of this study is to compare algorithms for data analysis of industrial accidents and this paper provides an optimal predicting model of 5 kinds of algorithms including CHAID, CART, C4.5, LR (Logistic Regression) and NN (Neural Network) with ROC chart, lift chart and response threshold. Also, this paper provides an approximation model for an optimal predicting model based on NN. The approximation model provided in this study can be utilized for easy interpretation of data analysis using NN. This study uses selected ten independent variables to group injured people according to a dependent variable in a way that reduces variation. In order to find an optimal predicting model among 5 algorithms, a retrospective analysis was performed in 67,278 subjects. The sample for this work chosen from data related to industrial accidents during three years ($2002\;{\sim}\;2004$) in korea. According to the result analysis, NN has excellent performance for data analysis and classification of industrial accidents.

Software Quality Prediction based on Defect Severity (결함 심각도에 기반한 소프트웨어 품질 예측)

  • Hong, Euy-Seok
    • Journal of the Korea Society of Computer and Information
    • /
    • v.20 no.5
    • /
    • pp.73-81
    • /
    • 2015
  • Most of the software fault prediction studies focused on the binary classification model that predicts whether an input entity has faults or not. However the ability to predict entity fault-proneness in various severity categories is more useful because not all faults have the same severity. In this paper, we propose fault prediction models at different severity levels of faults using traditional size and complexity metrics. They are ternary classification models and use four machine learning algorithms for their training. Empirical analysis is performed using two NASA public data sets and a performance measure, accuracy. The evaluation results show that backpropagation neural network model outperforms other models on both data sets, with about 81% and 88% in terms of accuracy score respectively.

Design of a binary decision tree using genetic algorithm for recognition of the defect patterns of cold mill strip (유전 알고리듬을 이용한 이진 트리 분류기의 설계와 냉연 흠 분류에의 적용)

  • Kim, Kyoung-Min;Lee, Byung-Jin;Lyou, Kyoung;Park, Gwi-Tae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.1
    • /
    • pp.98-103
    • /
    • 2000
  • This paper suggests a method to recognize the various defect patterns of a cold mill strip using a binary decision tree automatically constructed by a genetic algorithm(GA). In classifying complex patterns with high similarity like the defect patterns of a cold mill stirp, the selection of an optimal feature set and an appropriate recognizer is important to achieve high recognition rate. In this paper a GA is used to select a subset of the suitable features at each node in the binary decision tree. The feature subset with maximum fitness is chosen and the patterns are classified into two classes using a linear decision function. This process is repeated at each node until all the patterns are classified into individual classes. In this way, the classifier using the binary decision tree is constructed automatically. After constructing the binary decision tree, the final recognizer is accomplished by having neural network learning sits of standard patterns at each node. In this paper, the classifier using the binary decision tree is applied to the recognition of defect patterns of a cold mill strip, and the experimental results are given to demonstrate the usefulness of the proposed scheme.

  • PDF

A design of neuro-fuzzy adaptive controller using a reference model following function (기준 모델 추종 기능을 이용한 뉴로-퍼지 적응 제어기 설계)

  • Lee, Young-Seog;Ryoo, Dong-Wan;Seo, Bo-Hyeok
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.4 no.2
    • /
    • pp.203-208
    • /
    • 1998
  • This paper presents an adaptive fuzzy controller using an neural network and adaptation algorithm. Reference-model following neuro-fuzzy controller(RMFNFC) is invesgated in order to overcome the difficulty of rule selecting and defects of the membership function in the general fuzzy logic controller(FLC). RMFNFC is developed to tune various parameter of the fuzzy controller which is used for the discrete nonlinear system control. RMFNFC is trained with the identification information and control closed loop error. A closed loop error is used for design criteria of a fuzzy controller which characterizes and quantize the control performance required in the overall control system. A control system is trained up the controller with the variation of the system obtained from the identifier and closed loop error. Numerical examples are presented to control of the discrete nonlinear system. Simulation results show the effectiveness of the proposed controller.

  • PDF

A Study on the Pattern Classificatiion of the EMG Signals Using Neural Network and Probabilistic Model (신경회로망과 확률모델을 이용한 근전도신호의 패턴분류에 관한 연구)

  • 장영건;권장우;장원환;장원석;홍성홍
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.28B no.10
    • /
    • pp.831-841
    • /
    • 1991
  • A combined model of probabilistic and MLP(multi layer perceptron) model is proposed for the pattern classification of EMG( electromyogram) signals. The MLP model has a problem of not guaranteeing the global minima of error and different quality of approximations to Bayesian probabilities. The probabilistic model is, however, closely related to the estimation error of model parameters and the fidelity of assumptions. A proper combination of these will reduce the effects of the problems and be robust to input variations. Proposed model is able to get the MAP(maximum a posteriori probability) in the probabilistic model by estimating a priori probability distribution using the MLP model adaptively. This method minimize the error probability of the probabilistic model as long as the realization of the MLP model is optimal, and this is a good combination of the probabilistic model and the MLP model for the usage of MLP model reliability. Simulation results show the benefit of the proposed model compared to use the Mlp and the probabilistic model seperately and the average calculation time fro classification is about 50ms in the case of combined motion using an IBM PC 25 MHz 386model.

  • PDF