• Title/Summary/Keyword: neural network.

Search Result 11,767, Processing Time 0.041 seconds

Alphabetical Gesture Recognition using HMM (HMM을 이용한 알파벳 제스처 인식)

  • Yoon, Ho-Sub;Soh, Jung;Min, Byung-Woo
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 1998.10c
    • /
    • pp.384-386
    • /
    • 1998
  • The use of hand gesture provides an attractive alternative to cumbersome interface devices for human-computer interaction(HCI). Many methods hand gesture recognition using visual analysis have been proposed such as syntactical analysis, neural network(NN), Hidden Markov Model(HMM) and so on. In our research, a HMMs is proposed for alphabetical hand gesture recognition. In the preprocessing stage, the proposed approach consists of three different procedures for hand localization, hand tracking and gesture spotting. The hand location procedure detects the candidated regions on the basis of skin-color and motion in an image by using a color histogram matching and time-varying edge difference techniques. The hand tracking algorithm finds the centroid of a moving hand region, connect those centroids, and thus, produces a trajectory. The spotting a feature database, the proposed approach use the mesh feature code for codebook of HMM. In our experiments, 1300 alphabetical and 1300 untrained gestures are used for training and testing, respectively. Those experimental results demonstrate that the proposed approach yields a higher and satisfying recognition rate for the images with different sizes, shapes and skew angles.

  • PDF

A Visual Model for the Perception of the Optical illusions from Discrete Dot Stimuli (이산 도트 자극에서 시각적 착시를 인식하는 시각 모델)

  • Jung, Eun-Hwa;Hong, Keong-Ho
    • The KIPS Transactions:PartB
    • /
    • v.10B no.6
    • /
    • pp.639-646
    • /
    • 2003
  • This paper proposes a neural network model for extracting optical illusions produced by a sequence of discontinuous dot stimuli. The proposed model is based on visual cell's characters founded by visual information processing path. This study approaches on the basis of physiological observation of the perceptual phenomena that some simple ways of discrete dots are perceived as a continuous virtual contour rather than as separate dots. This paper presents the implementation of the optical illusions from discrete dot stimuli that are composed of virtual polygons from 6 to 10 dots. This experimental data are similar to those of Smith & Vos's physiological experiments. The proposed model shows that it can extract continuous illusion contours from discrete dot stimuli successfully.

Low Dimensional Modeling and Synthesis of Head-Related Transfer Function (HRTF) Using Nonlinear Feature Extraction Methods (비선형 특징추출 기법에 의한 머리전달함수(HRTF)의 저차원 모델링 및 합성)

  • Seo, Sang-Won;Kim, Gi-Hong;Kim, Hyeon-Seok;Kim, Hyeon-Bin;Lee, Ui-Taek
    • The Transactions of the Korea Information Processing Society
    • /
    • v.7 no.5
    • /
    • pp.1361-1369
    • /
    • 2000
  • For the implementation of 3D Sound Localization system, the binaural filtering by HRTFs is generally employed. But the HRTF filter is of high order and its coefficients for all directions have to be stored, which imposes a rather large memory requirement. To cope with this, research works have centered on obtaining low dimensional HRTF representations without significant loss of information and synthesizing the original HRTF efficiently, by means of feature extraction methods for multivariate dat including PCA. In these researches, conventional linear PCA was applied to the frequency domain HRTF data and using relatively small number of principal components the original HRTFs could be synthesized in approximation. In this paper we applied neural network based nonlinear PCA model (NLPCA) and the nonlinear PLS repression model (NLPLS) for this low dimensional HRTF modeling and analyze the results in comparison with the PCA. The NLPCA that performs projection of data onto the nonlinear surfaces showed the capability of more efficient HRTF feature extraction than linear PCA and the NLPLS regression model that incorporates the direction information in feature extraction yielded more stable results in synthesizing general HRTFs not included in the model training.

  • PDF

CNN Architecture Predicting Movie Rating from Audience's Reviews Written in Korean (한국어 관객 평가기반 영화 평점 예측 CNN 구조)

  • Kim, Hyungchan;Oh, Heung-Seon;Kim, Duksu
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.9 no.1
    • /
    • pp.17-24
    • /
    • 2020
  • In this paper, we present a movie rating prediction architecture based on a convolutional neural network (CNN). Our prediction architecture extends TextCNN, a popular CNN-based architecture for sentence classification, in three aspects. First, character embeddings are utilized to cover many variants of words since reviews are short and not well-written linguistically. Second, the attention mechanism (i.e., squeeze-and-excitation) is adopted to focus on important features. Third, a scoring function is proposed to convert the output of an activation function to a review score in a certain range (1-10). We evaluated our prediction architecture on a movie review dataset and achieved a low MSE (e.g., 3.3841) compared with an existing method. It showed the superiority of our movie rating prediction architecture.

Predicting Win-Loss of League of Legends Using Bidirectional LSTM Embedding (양방향 순환신경망 임베딩을 이용한 리그오브레전드 승패 예측)

  • Kim, Cheolgi;Lee, Soowon
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.9 no.2
    • /
    • pp.61-68
    • /
    • 2020
  • E-sports has grown steadily in recent years and has become a popular sport in the world. In this paper, we propose a win-loss prediction model of League of Legends at the start of the game. In League of Legends, the combination of a champion statistics of the team that is made through each player's selection affects the win-loss of the game. The proposed model is a deep learning model based on Bidirectional LSTM embedding which considers a combination of champion statistics for each team without any domain knowledge. Compared with other prediction models, the highest prediction accuracy of 58.07% was evaluated in the proposed model considering a combination of champion statistics for each team.

Optimization of a Cooling Channel with Staggered Elliptical Dimples Using Neural Network Techniques (신경회로망기법을 사용한 타원형 딤플유로의 냉각성능 최적화)

  • Kim, Hyun-Min;Moon, Mi-Ae;Kim, Kwang-Yong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.13 no.6
    • /
    • pp.42-50
    • /
    • 2010
  • The present analysis deals with a numerical procedure for optimizing the shape of elliptical dimples in a cooling channel. The three-dimensional Reynolds-averaged Navier-Stokes (RANS) analysis is employed in conjunction with the SST model for predictions of the turbulent flow and the heat transfer. Three non-dimensional geometric design variables, such as the ellipse dimple diameter ratio, ratio of the dimple depth to the average diameter, and ratio of the distance between dimples to the pitch are considered in the optimization. Twenty-one experimental points within design space are selected by Latin Hypercube Sampling. Each objective function values at these points are evaluated by RANS analysis and producing optimal point using surrogate model. The linear combination of heat transfer coefficient and friction loss related terms with a weighting factor is defined as the objective function. The results show that the optimized elliptical dimple shape improves considerably the heat transfer performance than the circular dimple shape.

Intelligent Methods to Extract Knowledge from Process Data in the Industrial Applications

  • Woo, Young-Kwang;Bae, Hyeon;Kim, Sung-Shin;Woo, Kwang-Bang
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.3 no.2
    • /
    • pp.194-199
    • /
    • 2003
  • Data are an expression of the language or numerical values that show some features. And the information is extracted from data for the specific purposes. The knowledge is utilized as information to construct rules that recognize patterns or make a decision. Today, knowledge extraction and application of that are broadly accomplished for the easy comprehension and the performance improvement of systems in the several industrial fields. The knowledge extraction can be achieved by some steps that include the knowledge acquisition, expression, and implementation. Such extracted knowledge is drawn by rules with data mining techniques. Clustering (CL), input space partition (ISP), neuro-fuzzy (NF), neural network (NN), extension matrix (EM), etc. are employed for the knowledge expression based upon rules. In this paper, the various approaches of the knowledge extraction are surveyed and categorized by methodologies and applied industrial fields. Also, the trend and examples of each approaches are shown in the tables and graphes using the categories such as CL, ISP, NF, NN, EM, and so on.

Adaptive Learning Control fo rUnknown Monlinear Systems by Combining Neuro Control and Iterative Learning Control (뉴로제어 및 반복학습제어 기법을 결합한 미지 비선형시스템의 적응학습제어)

  • 최진영;박현주
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.8 no.3
    • /
    • pp.9-15
    • /
    • 1998
  • This paper presents an adaptive learning control method for unknown nonlinear systems by combining neuro control and iterative learning control techniques. In the present control system, an iterative learning controller (ILC) is used for a process of short term memory involved in a temporary adaptive and learning manipulation and a short term storage of a specific temporary action. The learning gain of the iterative learning law is estimated by using a neural network for an unknown system except relative degrees. The control informations obtained by ILC are transferred to a long term memory-based feedforward neuro controller (FNC) and accumulated in it in addition to the previously stored infonnations. This scheme is applied to a two link robot manipulator through simulations.

  • PDF

Comparison between the Application Results of NNM and a GIS-based Decision Support System for Prediction of Ground Level SO2 Concentration in a Coastal Area

  • Park, Ok-Hyun;Seok, Min-Gwang;Sin, Ji-Young
    • Environmental Engineering Research
    • /
    • v.14 no.2
    • /
    • pp.111-119
    • /
    • 2009
  • A prototype GIS-based decision support system (DSS) was developed by using a database management system (DBMS), a model management system (MMS), a knowledge-based system (KBS), a graphical user interface (GUI), and a geographical information system (GIS). The method of selecting a dispersion model or a modeling scheme, originally devised by Park and Seok, was developed using our GIS-based DSS. The performances of candidate models or modeling schemes were evaluated by using a single index(statistical score) derived by applying fuzzy inference to statistical measures between the measured and predicted concentrations. The fumigation dispersion model performed better than the models such as industrial source complex short term model(ISCST) and atmospheric dispersion model system(ADMS) for the prediction of the ground level $SO_2$ (1 hr) concentration in a coastal area. However, its coincidence level between actual and calculated values was poor. The neural network models were found to improve the accuracy of predicted ground level $SO_2$ concentration significantly, compared to the fumigation models. The GIS-based DSS may serve as a useful tool for selecting the best prediction model, even for complex terrains.

Design of Fuzzy System for Decision of Arrhythmia using Wavelet Coefficients (웨이브렛 계수를 이용한 부정맥 판정용 퍼지시스템 설계)

  • Kim, Min-Soo;Seo, Hee-Don
    • Journal of Sensor Science and Technology
    • /
    • v.11 no.4
    • /
    • pp.230-238
    • /
    • 2002
  • In this paper, we designed a fuzzy system using the wavelet coefficients to detection the PVCs effectively and to increase the accuracy of decision of the arrhythmia. In the proposed Fuzzy system, the QRS complex of ECG signal is divided into 6th level frequence bands by wavelet transform using Haar wavelet. The MIT/BIH database for the source of input signal is used in order to evaluate the performance of the proposed system. From the simulation results, the decision of membership functions for PVCs and heart rates by using Fuzzy rules, we detected the abnormal values effectively by application of leaned from neural network and we also found results in classification ratio of 95% the decision of arrhythmia.