• Title/Summary/Keyword: neural network theory model

Search Result 166, Processing Time 0.027 seconds

A Study on the Rainfall Forecasting Using Neural Network Model in Nakdong River Basin - A Comparison with Multivariate Model- (낙동강유역에서 신경망 모델을 이용한 강우예측에 관한 연구 - 다변량 모델과의 비교 -)

  • Cho, Hyeon-Kyeong;Lee, Jeung-Seok
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.2 no.2
    • /
    • pp.51-59
    • /
    • 1999
  • This study aims at the development of the techniques for the rainfall forecasting in river basins by applying neural network theory and compared with results of Multivariate Model (MVM). This study forecasts rainfall and compares with a observed values in the San Chung gauging stations of Nakdong river basin for the rainfall forecasting of river basin by proposed Neural Network Model(NNM). For it, a multi-layer Neural Network is constructed to forecast rainfall. The neural network learns continuous-valued input and output data. The result of rainfall forecasting by the Neural Network Model is superior to the results of Multivariate Model for rainfall forecasting in the river basin. So I think that the Neural Network Model is able to be much more reliable in the rainfall forecasting.

  • PDF

A Study on the Nonlinear Modeling of Base Isolator Systems by a Neural Network Theory : Application to Lead Rubber Bearings (신경망 이론을 이용한 지진격리 장치의 비선형 모델링 기법 연구 : 납삽입 적층 고무베어링에 적용한 예)

  • 허영철;김영중;김병현
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.03a
    • /
    • pp.433-441
    • /
    • 2003
  • In this paper, a study on the nonlinear modeling of lead rubber bearings(LRBs) by a neural network theory was carried out. The random tests on the LRB were used for a training of neural network model. Numerical simulations using the neural network model were peformed on a scaled structural model with the LRBs excited by three type of seismic loads and compared with the shaking table tests. As a result, it was shown that the neural network model would be useful to a numerical modeling of LRB.

  • PDF

Active Suspension System Control Using Optimal Control & Neural Network (최적제어와 신경회로망을 이용한 능동형 현가장치 제어)

  • 김일영;정길도;이창구
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.4
    • /
    • pp.15-26
    • /
    • 1998
  • Full car model is needed for investigating as a entire dynamics of vehicle. In this study, 7DOF of full car model's dynamics is selected. This paper proposes the output feedback controller based on optimal control theory. Input data and output data from the optimal controller are used for neural network system identification of the suspension system. To do system identification, neural network which has robustness against nonlinearities and disturbances is adapted. This study uses back-propagation algorithm to train a multil-layer neural network. After obtaining a neural network model of a suspension system, a neuro-controller is designed. Neuro-controller controls suspension system with off-line learning method and multistep ahead prediction model based on the neural network model and a neuro-controller. The optimal controller and the neuro-controller are designed and then, both performances are compared through. For simulation, sinusoidal and rectangular virtual bumps are selected.

  • PDF

Relationships Between the Characteristics of the Business Data Set and Forecasting Accuracy of Prediction models (시계열 데이터의 성격과 예측 모델의 예측력에 관한 연구)

  • 이원하;최종욱
    • Journal of Intelligence and Information Systems
    • /
    • v.4 no.1
    • /
    • pp.133-147
    • /
    • 1998
  • Recently, many researchers have been involved in finding deterministic equations which can accurately predict future event, based on chaotic theory, or fractal theory. The theory says that some events which seem very random but internally deterministic can be accurately predicted by fractal equations. In contrast to the conventional methods, such as AR model, MA, model, or ARIMA model, the fractal equation attempts to discover a deterministic order inherent in time series data set. In discovering deterministic order, researchers have found that neural networks are much more effective than the conventional statistical models. Even though prediction accuracy of the network can be different depending on the topological structure and modification of the algorithms, many researchers asserted that the neural network systems outperforms other systems, because of non-linear behaviour of the network models, mechanisms of massive parallel processing, generalization capability based on adaptive learning. However, recent survey shows that prediction accuracy of the forecasting models can be determined by the model structure and data structures. In the experiments based on actual economic data sets, it was found that the prediction accuracy of the neural network model is similar to the performance level of the conventional forecasting model. Especially, for the data set which is deterministically chaotic, the AR model, a conventional statistical model, was not significantly different from the MLP model, a neural network model. This result shows that the forecasting model. This result shows that the forecasting model a, pp.opriate to a prediction task should be selected based on characteristics of the time series data set. Analysis of the characteristics of the data set was performed by fractal analysis, measurement of Hurst index, and measurement of Lyapunov exponents. As a conclusion, a significant difference was not found in forecasting future events for the time series data which is deterministically chaotic, between a conventional forecasting model and a typical neural network model.

  • PDF

Development of Rainfall Forecastion Model Using a Neural Network (신경망이론을 이용한 강우예측모형의 개발)

  • 오남선
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1996.10a
    • /
    • pp.253-256
    • /
    • 1996
  • Rainfall is one of the major and complicated elements of hydrologic system. Accurate prediction of rainfall is very important to mitigate storm damage. The neural network is a good model to be applied for the classification problem, large combinatorial optimization and nonlinear mapping. In this dissertation, rainfall predictions by the neural network theory were presented. A multi-layer neural network was constructed. The network learned continuous-valued input and output data. The network was used to predict rainfall. The online, multivariate, short term rainfall prediction is possible by means of the developed model. A multidimensional rainfall generation model is applied to Seoul metropolitan area in order to generate the 10-minute rainfall. Application of neural network to the generated rainfall shows good prediction. Also application of neural network to 1-hour real data in Seoul metropolitan area shows slightly good predictions.

  • PDF

Application of Artificial Neural Network Theory for Evaluation of Unconfined Compression Strength of Deep Cement Mixing Treated Soil (심층혼합처리된 개량토의 일축압축강도 추정을 위한 인공신경망의 적용)

  • Kim, Young-Sang;Jeong, Hyun-Chel;Huh, Jung-Won;Jeong, Gyeong-Hwan
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.1159-1164
    • /
    • 2006
  • In this paper an artificial neural network model is developed to estimate the unconfined compression strength of Deep Cement Mixing(DCM) treated soil. A database which consists of a number of unconfined compression test result compiled from 9 clay sites is used to train and test of the artificial neural network model. Developed neural network model requires water content of soil, unit weight of soil, passing percent of #200 sieve, weight of cement, w-c ratio as input variables. It is found that the developed artificial neural network model can predict more precise and reliable unconfined compression strength than the conventional empirical models.

  • PDF

A Study on the Nonlinear Modeling of Lead Rubber Bearings by a Neural Network Theory (신경망 이론을 적용한 납삽입 적층 고무베어링의 비선형 모델링 기법에 관한 연구)

  • Huh, Young-Cheol;Kim, Young-Joong;Kim, Byung-Hyun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.8 no.4
    • /
    • pp.63-69
    • /
    • 2004
  • In this paper, a nonlinear modeling of lead rubber bearings(LRBs) was presented by a neural network theory. An shaking table test for a scaled frame model, of which base was isolated by the LRBs, was performed to verify numerical accuracies of the neural network model. White noise and three types of seismic records were adoped as base loads of the shaking table in order to train and generalize the neural network in case of seismic loads, numerical results of the neural network model were evaluated according to different magnitudes of PGA. As results, it is concluded that the presented neural network model has given a good agreement with the experimental data in details and can be useful to a nonlinear modeling of LRBs within prescribed domains.

Development of Traffic Accidents Prediction Model With Fuzzy and Neural Network Theory (퍼지 및 신경망 이론을 이용한 교통사고예측모형 개발에 관한 연구)

  • Kim, Jang-Uk;Nam, Gung-Mun;Kim, Jeong-Hyeon;Lee, Su-Beom
    • Journal of Korean Society of Transportation
    • /
    • v.24 no.7 s.93
    • /
    • pp.81-90
    • /
    • 2006
  • It is important to clarify the relationship between traffic accidents and various influencing factors in order to reduce the number of traffic accidents. This study developed a traffic accident frequency prediction model using by multi-linear regression and qualification theories which are commonly applied in the field of traffic safety to verify the influences of various factors into the traffic accident frequency The data were collected on the Korean National Highway 17 which shows the highest accident frequencies and fatality rates in Chonbuk province. In order to minimize the uncertainty of the data, the fuzzy theory and neural network theory were applied. The neural network theory can provide fair learning performance by modeling the human neural system mathematically. Tn conclusion, this study focused on the practicability of the fuzzy reasoning theory and the neural network theory for traffic safety analysis.

A Novel Stabilizing Control for Neural Nonlinear Systems with Time Delays by State and Dynamic Output Feedback

  • Liu, Mei-Qin;Wang, Hui-Fang
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.1
    • /
    • pp.24-34
    • /
    • 2008
  • A novel neural network model, termed the standard neural network model (SNNM), similar to the nominal model in linear robust control theory, is suggested to facilitate the synthesis of controllers for delayed (or non-delayed) nonlinear systems composed of neural networks. The model is composed of a linear dynamic system and a bounded static delayed (or non-delayed) nonlinear operator. Based on the global asymptotic stability analysis of SNNMs, Static state-feedback controller and dynamic output feedback controller are designed for the SNNMs to stabilize the closed-loop systems, respectively. The control design equations are shown to be a set of linear matrix inequalities (LMIs) which can be easily solved by various convex optimization algorithms to determine the control signals. Most neural-network-based nonlinear systems with time delays or without time delays can be transformed into the SNNMs for controller synthesis in a unified way. Two application examples are given where the SNNMs are employed to synthesize the feedback stabilizing controllers for an SISO nonlinear system modeled by the neural network, and for a chaotic neural network, respectively. Through these examples, it is demonstrated that the SNNM not only makes controller synthesis of neural-network-based systems much easier, but also provides a new approach to the synthesis of the controllers for the other type of nonlinear systems.

Formulation of the Neural Network for Implicit Constitutive Model (II) : Application to Inelastic Constitutive Equations

  • Lee, Joon-Seong;Lee, Eun-Chul;Furukawa, Tomonari
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.8 no.4
    • /
    • pp.264-269
    • /
    • 2008
  • In this paper, two neural networks as a material model, which are based on the state-space method, have been proposed. One outputs the rates of inelastic strain and material internal variables whereas the outputs of the other are the next state of the inelastic strain and material internal variables. Both the neural networks were trained using input-output data generated from Chaboche's model and successfully converged. The former neural network could reproduce the original stress-strain curve. The neural network also demonstrated its ability of interpolation by generating untrained curve. It was also found that the neural network can extrapolate in close proximity to the training data.