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Abstract

In this paper, two neural networks as a material model, which are based on the state-space method, have been proposed. One outputs the

rates of inelastic strain and material internal variables whereas the outputs of the other are the next state of the inelastic strain and material

internal variables. Both the neural networks were trained using input-output data generated from Chaboche's model and successfully

converged. The former neural network could reproduce the original stress-strain curve. The neural network also demonstrated its ability of

interpolation by generating untrained curve. It was also found that the neural network can extrapolate in close proximity to the training data.
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1. Introduction

Problems of using explicit constitutive equations have been
the difficulty of determining an appropriate parameter set and
the inaccuracy of the model itself. The former problem has been
overcome by the parameter identification approach referred to in
Ref. [1]. For the latter, we have to either introduce a more
complex explicit model or replace it by an implicit constitutive
equation.

Multilayer feedforward neural networks, explained in this
paper, have been proposed for material modeling by a couple or
researchers as introduced in Ref. [2]. Yamamoto's model[3] is
not as strong as the other two models as a consequence that the
neural-based model is made with the help of Ramberg-Osgood
model, thereby not being completely implicit. Nevertheless, this
dose not mean that the other methods are most appropriate. One
of the deficiencies of Ghaboussi's model[4] is that path-
dependence is achieved by taking only the past three points. It is
needless to say that we have to increase the number of past
points to describe the hysteresis behavior of materials, although
the increase of the number causes the dimension of the input
space to be large. Miyazaki's architecture[5], in comparison, is
rather the straight imitation of Ghaboussi's model. In order to
describe the path-dependence, the architecture therefore
redundantly used two components; internal variables and the
past three points. Another serious problem, common in both the
models, are that the increments Ao and AY are used as
inputs, which is very sensitive to experimental data. This can
yield very unstable neural networks nparticularly if the
measurements are subject to errors, thereby not being suitable.
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Proposed by the authors in this paper is a multi neural network,
the formulation of which is based on mathematical warrants. A
general neural network constitutive model is presented in
conjunction with the state-space method, which can describe any
dynamical system.

2. State-Space Method

The idea of state space comes from the state-variable method
of describing differential equations. In this method, dynamical
systems are described by a set of first-order differential
equations in variables called the "state", and the solution may be
visualized as a trajectory in space. The method is particularly
well suited to performing calculations by computer.

Use of the state-space approach has often been referred to as
modern control theory[6-8], whereas use of transfer-function
based methods such as root locus and frequency response have
been referred to as classical control design. Advantage of state-
space design are especially apparent when engineers design
controllers for systems with more than one control input or more
than one sensed output. A further advantage of state-space
design is that the system representation provides a complete
internal description of the system, including possible internal
oscillations or instabilities that might be hidden by inappropriate
cancellations in the transfer-function (input/ output) description.

The motion of any finite dynamic system can be expressed as
a set of first-order ordinary differential equations. This is often
referred to as the state-variable representation. In general, a
nonlinear dynamic system is given by
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with initial conditions :
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where x' € R is a set of n state variables and ' € R"a set of r
control inputs. @ : R"xR" — R" is assumed to be continuously
differentiable with respect to each of its arguments.

For example, Newton's law for a single mass M moving in
one dimension x under force F is

Mi=F. 3)
If we define one state variable as the position x, = x and the

other state variable as the velocity x, = x, this equation can be
written as

X, =x, 4)
. F
BT (5)

This first-order linear differential equations can be concisely
expressed using matrix notation. If we collect the state into a
column vector x, and the coefficients of the state equations into
a square matrix A, and the coefficients of the input into the
column matrix B, these equations can be written in matrix form

SELHE .
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as

or

where A is the system matrix and B is the input matrix. More
generally the equation is hence represented by Eq. (1).

Now, we are concerned with discrete-time systems, which can
be represented by difference equation corresponding to the
differential equations given in Eq. (1). This takes the form:

s =(D(xk,uk) (8)

where xk and uk are discrete time sequences. xk+1 is calculated
by integrating Eq. (1) with respect to time as follows:

A= ALK )

where At is the time increment between k and k+1.

One of some recent papers[9] demonstrated that neural
networks can be used effectively for the identification and
control of nonlinear dynamical systems, The structure of the
controller used in the paper was dependent on the structure of
the nonlinear system under consideration, of which some partial
knowledge was assumed. This work was extended by
Refs.[10,11], considering a unified approach for the control of
higher order systems where full state information is not
available, and where no specific information about the structure

of the system is assumed.

Previous work by the dynamics community, as a conclusion,
proved that multilayer neural networks can emulate a system
whose structure is unknown but its input-output data are
obtainable. Up to now, though not much discussion was done
for their comparison, two major neural network architectures
have been intensively used [12,13];
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Fig. 2. Block diagrams of training neural networks

and they are illustrated in Fig. . Clearly Case II is more
complicated than Case I because of the additional integration
term. Fig. 2 and Fig. 3 shows the training of the neural network
from the input-output data of the system.

If the material behavior can also be described in state-space
form, we can apply neural networks to emulate the behaviors
and use the networks as a material model. In the next section,
we will propose the general state-space formulation of material
behavior.
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3. State Space Representation of Material
Behaviors

Under uniaxial loading, let the inelastic strain be ¢p and a set
of T internal variables $ERY, the inelastic material behaviors
can typically have the following form:

ép' = ép(gpt %5”0}3

(10

£ = b o), (11

where o is the stress. Note here that internal variables can be
kinematic and isotropic variables or anything else, depending on
materials to be described. Comparing these equations with the
state-space equation (1), we can find that the inelastic strain and
internal material variables correspond to the state variables
whereas the stress acts as a control input. The dynamics of the
equations can be specified by giving the initial conditions of the
state variables

(12)

é:l:-tn = éo'

(13)

and the control inputs for all t accordingly. Similar to Eq. {8),
Egs. (10) and (11) can be restated for discretization:
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(14)

A+l ~ '3
k £
ef =5"(£” Eho ),

g =¢(s” 840t (15)

Note that the control input of dynamical systems, being
known for all t, are normally independent of the state variables,
but the control input of the inelastic material are the stress and is
therefore derived from the state variables.
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In accordance to the previous section, we can propose two
neural networks;

CaseI Output &” and & from &7 ,=¢&% and o,
Case Il Output 7" and &' from £”,=¢%and o,

The proposed neural network architectures and the block
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diagram describing the derivation of the stress are respectively
shown in Figs. 3 and 4, which block diagrams for training the
networks are illustrated in Fig. 5. The advantage of the neural
network architecture to the others are clearly the following
points:

(a) Simplicity : Only one neural network is used, compared to
Miyazaki's model{5], which uses two neural networks
independently, and the input layer consists of only the latest
information of strain, internal variables and stress.

(b) Generality : Depending on the material to be chosen, any
kind of internal variable can be used as far as the material can
have the state-space representation.

4. Numerical Examples

The error development of the training and validation set until
10,000 trainings is shown in Fig. 6. Clearly, the error is
approaching to zero, indicating that the neural network is
learning the material law. Figs 7-9 show stress-strain curve,
strain-time and stress-time curves of the fraining data and the
corresponding curves created by the neural network. It is seen
that the curve by the network is well correlated with the training
data, indicating that the neural network formulation can mimic
Chaboche's model
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Fig. 6. Error development of training and validation data
(Case I)

Now that we found that the proposed network could
reproduce the training data, we will investigate the interpolative
capability of the network. For example, Fig. 10 and Fig. 1]
shows the strain-time and stress-time curves by Chaboche's
model, and their equivalence created by the neural network, with
cyclic strain range of £0.04%. This result indicates that the
neural network can create a curve similar to the exact curve
extrapolatively is the extrapolation is adjacent. However, the
peak of the second cycle of back stress shows large errors,
indicating that there is no guarantee in extrapolation.
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Fig. 7. Stress-strain plots created by training data and the curve
created by neural network

0.06
0.05 Total strain (Training data) «
Sl Inelastic strain (Training data) -+
Total strain ——
0.04 Inelastic strain

Strain %
bd
2

0 W 2 30 4 S0 6 70 8
Time s
Fig. 8. Training data of stresses and corresponding curve created
by neural network
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Fig. 9. Training data of strains and corresponding curve created
by neural network

Although the training and validation data depicted in Fig. 7
were used for training, the outcome from the trained network
extremely bad. Therefore, the network was trained with the
training data obtained at every computer simulation during the
material tensile behavior,
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(Case I, Maximum strain range: 0.04%)

The error development of the training and validations sets
until 60,000 trainings is shown in Fig. 12. However, Fig. 12
illustrate that the neural network curve deviates from the exact
curve. The reason for the deviation can be easily explained from
the curves of the inelastic strain and back stress in Fig. 13,
which increases its deviation from the exact curves as time goes.
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5. Conclusions

Two neural networks as a material model, which are based on
the state-space method, have been proposed.
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Fig. 13. Exact stress-strain curve and curve created by neural
network (Case [I, Maximum strain range: 0.04%)

One outputs the rates of inelastic strain and material internal
variables whereas the outputs of the other are the next state of
the inelastic strain and material internal variables. Both the
neural networks were trained using input-output data generated
from Chaboche's model and successfully converged. The former
neural network could reproduce the original stress-strain curve.
The neural network also demonstrated its ability of interpolation
by generating untrained curve. It was also found that the neural
network can extrapolate in close proximity to the training data.
Therefore, the neural network can replace Chaboche's model
completely by its interpolative capability if more training data
with different conditions are used. This obviously means that the
network is superior to all the existing explicit constitutive
models by the fact that it is not governed by the explicitness of
the model equations and their internal parameters. The curve
created by the latter network, in contrast, deviated from the
training data significantly. In conclusion, the former neural
network has shown its validity as an powerful material model.

Training data for the proposed neural network nevertheless
cannot be easily obtained from the actual experimental data. The
next version will refer to strategies for extracting the training
data from experiments.
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