• Title/Summary/Keyword: neural network procedure

검색결과 349건 처리시간 0.025초

A Neural Metwork's FPGA Realization using Gate Level Structure (게이트레벨 연산구조를 사용한 신경합의 FPGA구현)

  • Lee, Yun-Koo;Jeong, Hong
    • Journal of Korea Multimedia Society
    • /
    • 제4권3호
    • /
    • pp.257-269
    • /
    • 2001
  • Because of increasing number of integrated circuit, there is many tries of making chip of neural network and some chip is exit. but this is not prefer because YLSI technology can't support so large hardware. So imitation of whole system of neural network is more prefer. There is common procedure in signal processing as in the neural network and pattern recognition. That is multiplication of large amount of signal and reading LUT. This is identical with some operation of MLP, and need iterative and large amount of calculation, so if we make this part with hardware, overall system's velocity will be improved. So in this paper, we design neutral network, not neuron which can be used to many other fields. We realize this part by following separated bits addition method, and it can be appled in the real time parallel process processing.

  • PDF

Construction of Sound Quality Index for the Vehicle HVAC System Using Regression Model and Neural Network Model (회귀모형과 신경망모형을 이용한 차량공조시스템의 음질 인덱스 구축)

  • Park, Sang-Gil;Lee, Hae-Jin;Sim, Hyun-Jin;Lee, Jung-Youn;Oh, Jae-Eung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 한국소음진동공학회 2006년도 춘계학술대회논문집
    • /
    • pp.1443-1448
    • /
    • 2006
  • The reduction of the vehicle interior noise has been the main interest of NVH engineers. The driver's perception on the vehicle noise is affected largely by psychoacoustic characteristic of the noise as well as the SPL. In particular, the HVAC sound among the vehicle interior noise has been reflected sensitively in the side of psychology. Even though the HVAC noise is not louder than overall noise level, it clearly affects subjective perception in the way of making a diver become nervous or annoyed. Therefore, these days a vehicle engineer takes aim at developing sound quality as well as reduction of noise. In this paper, we acquired noises in the HVAC from many vehicles. Through the objective and subjective sound quality evaluation with acquiring noises caused by the vehicle HVAC system, the simple and multiple regression models were obtained for the subjective evaluation 'Pleasant' using the sound quality metrics. The regression procedure also allows you to produce diagnostic statistics to evaluate the regression estimates including appropriation and accuracy. Furthermore, the neural network model were obtained using three inputs(loudness, sharpness and roughness) of the sound quality metrics and one output(subjective 'Pleasant'). And then the models were compared with correlations between sound quality index outputs and hearing test results for 'Pleasant'. As a result of application of the sound quality index, the neural network was verified with the largest correlation of the sound quality index.

  • PDF

A study on performance improvement of neural network using output probability of HMM (HMM의 출력확률을 이용한 신경회로망의 성능향상에 관한 연구)

  • Pyo Chang Soo;Kim Chang Keun;Hur Kang In
    • Journal of the Institute of Convergence Signal Processing
    • /
    • 제1권1호
    • /
    • pp.1-6
    • /
    • 2000
  • In this paper, the hybrid system of HMM and neural network is proposed and show better recognition rate of the post-process procedure which minimizes the process error of recognition than that of HMM(Hidden Markov Model) only used. After the HMM training by training data, testing data that are not taken part in the training are sent to HMM. The output probability from HMM output by testing data is used for the training data of the neural network, post processor. After neural network training, the hybrid system is completed. This hybrid system makes the recognition rate improvement of about $4.5\%$ in MLP and about $2\%$ in RBFN and gives the solution to training time of conventional hybrid system and to decrease of the recognition rate due to the lack of training data in real-time speech recognition system.

  • PDF

Fault Classification of a Blade Pitch System in a Floating Wind Turbine Based on a Recurrent Neural Network

  • Cho, Seongpil;Park, Jongseo;Choi, Minjoo
    • Journal of Ocean Engineering and Technology
    • /
    • 제35권4호
    • /
    • pp.287-295
    • /
    • 2021
  • This paper describes a recurrent neural network (RNN) for the fault classification of a blade pitch system of a spar-type floating wind turbine. An artificial neural network (ANN) can effectively recognize multiple faults of a system and build a training model with training data for decision-making. The ANN comprises an encoder and a decoder. The encoder uses a gated recurrent unit, which is a recurrent neural network, for dimensionality reduction of the input data. The decoder uses a multilayer perceptron (MLP) for diagnosis decision-making. To create data, we use a wind turbine simulator that enables fully coupled nonlinear time-domain numerical simulations of offshore wind turbines considering six fault types including biases and fixed outputs in pitch sensors and excessive friction, slit lock, incorrect voltage, and short circuits in actuators. The input data are time-series data collected by two sensors and two control inputs under the condition that of one fault of the six types occurs. A gated recurrent unit (GRU) that is one of the RNNs classifies the suggested faults of the blade pitch system. The performance of fault classification based on the gate recurrent unit is evaluated by a test procedure, and the results indicate that the proposed scheme works effectively. The proposed ANN shows a 1.4% improvement in its performance compared to an MLP-based approach.

DSP based Real-Time Fault Determination Methodology using Artificial Neural Network in Smart Grid Distribution System (스마트 그리드 배전계통에서 인공신경회로망을 이용한 DSP 기반 실시간 고장 판단 방법론 기초 연구)

  • Jin-Eun Kim;Yu-Rim Lee;Jung-Woo Choi;Byung-Hoon Roh;Yun-Seok Ko
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • 제18권5호
    • /
    • pp.817-826
    • /
    • 2023
  • In this paper, a fault determination methodology based on an artificial neural network was proposed to protect the system from faults on the lines in the smart grid distribution system. In the proposed methodology, first, it was designed to determine whether there is a low impedance line fault (LIF) based on the magnitude of the current RMS value, and if it is determined to be a normal current, it was designed to determine whether a high impedance ground fault (HIF) is present using Normal/HIF classifier based on artificial neural network. Among repetitive DSP module-based algorithm verification tests, the normal/HIF classifier recognized the current waveform as normal and did not show reclosing operation for the cases of normal state current waveform simulation test where the RMS value was smaller than the minimum operating current value. On the other hand, for the cases of LIF where RMS value is greater than the minimum operating current value, the validity of the proposed methodology could be confirmed by immediately recognizing it as a fault state and showing reclosing operation according to the prescribed procedure.

Design of Radar Signal Processing System for Drone Detection (드론 검출을 위한 레이다 신호처리 시스템 설계)

  • Hong-suk Kim;Gyu-ri Ban;Ji-hun Seo;Yunho Jung
    • Journal of Advanced Navigation Technology
    • /
    • 제28권5호
    • /
    • pp.601-609
    • /
    • 2024
  • In this paper, we present the design and implementation results of a system that classifies drones from other objects using an FMCW (frequency-modulated continuous wave) radar sensor. The proposed system detects various objects through a four-stage signal processing procedure, consisting of FFT, CFAR, clustering, and tracking, using signals received from the radar sensor. Subsequently, a deep learning process is conducted to classify the detected objects as either drones or other objects. To mitigate the high computational demands and extensive memory requirements of deep learning, a BNN (binary neural network) structure was applied, binarizing the CNN (convolutional neural network) operations. The performance evaluation and verification results demonstrated a drone classification accuracy of 89.33%, with a total execution time of 4 ms, confirming the feasibility of real-time operation.

Real Time AOA Estimation Using Neural Network combined with Array Antennas (어레이 안테나와 결합된 신경망모델에 의한 실시간 도래방향 추정 알고리즘에 관한 연구)

  • 정중식;임정빈;안영섭
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 한국항해항만학회 2003년도 춘계공동학술대회논문집
    • /
    • pp.87-91
    • /
    • 2003
  • It has well known that MUSIC and ESPRIT algorithms estimate angle of arrival(AOA) with high resolution by eigenvalue decomposition of the covariance matrix which were obtained from the array antennas. However, the disadvantage of MUSIC and ESPRIT is that they are computationally ineffective, and then they are difficult to implement in real time. The other problem of MUSIC and ESRPIT is to require calibrated antennas with uniform features, and are sensitive to the manufacturing facult and other physical uncertainties. To overcome these disadvantages, several method using neural model have been study. For multiple signals, those require huge training data prior to AOA estimation. This paper proposes the algorithm for AOA estimation by interconnected hopfield neural model. Computer simulations show the validity of the proposed algorithm. The proposed method does not require huge training procedure and only assigns interconnected coefficients to the neural network prior to AOA estimation.

  • PDF

Real Time AOA Estimation Using Analog Neural Network Model (아날로그 신경망 모델을 이용한 실시간 도래방향 추정 알고리즘의 개발)

  • Jeong, Jung-Sik
    • Journal of Navigation and Port Research
    • /
    • 제27권4호
    • /
    • pp.465-469
    • /
    • 2003
  • It has well known that MUSIC and ESPRIT algorithms estimate angle of arrival(AOA) with high resolution by eigenvalue decomposition of the covariance matrix which were obtained from the array antennas, However, the disadvantage of MUSIC and ESPRIT is that they are computationally ineffective, and then they are difficult to implement in real time. the other problem of MUSIC and ESPRIT is to require calibrated antennas with uniform features, and are sensitive ti the manufacturing fault and other physical uncertainties. To overcome these disadvantages, several method using neural model have been study. For multiple signals, those methods require huge training data prior to AOA estimation. This paper proposes the algorithm for AOA estimation by interconnected Hopfield neural model. Computer simulations show the validity of the proposed algorithm. It follows that the proposed method yields better AOA estimates than MUSIC. Moreover, out method does not require huge training procedure and only assigns interconnected coefficients to the neural network prior to AOA estimation.

Prediction of typhoon design wind speed and profile over complex terrain

  • Huang, W.F.;Xu, Y.L.
    • Structural Engineering and Mechanics
    • /
    • 제45권1호
    • /
    • pp.1-18
    • /
    • 2013
  • The typhoon wind characteristics designing for buildings or bridges located in complex terrain and typhoon prone region normally cannot be achieved by the very often few field measurement data, or by physical simulation in wind tunnel. This study proposes a numerical simulation procedure for predicting directional typhoon design wind speeds and profiles for sites over complex terrain by integrating typhoon wind field model, Monte Carlo simulation technique, CFD simulation and artificial neural networks (ANN). The site of Stonecutters Bridge in Hong Kong is chosen as a case study to examine the feasibility of the proposed numerical simulation procedure. Directional typhoon wind fields on the upstream of complex terrain are first generated by using typhoon wind field model together with Monte Carlo simulation method. Then, ANN for predicting directional typhoon wind field at the site are trained using representative directional typhoon wind fields for upstream and these at the site obtained from CFD simulation. Finally, based on the trained ANN model, thousands of directional typhoon wind fields for the site can be generated, and the directional design wind speeds by using extreme wind speed analysis and the directional averaged mean wind profiles can be produced for the site. The case study demonstrated that the proposed procedure is feasible and applicable, and that the effects of complex terrain on design typhoon wind speeds and wind profiles are significant.

Detection and Diagnosis of Induction Motor Using Conditional FCM and Radial Basis Function Network (조건부 FCM과 방사기저함수네트웍을 이용한 유도전동기 고장 검출)

  • Kim, Sung-Suk;Lee, Dae-Jeong;Park, Jang-Hwan;Ryu, Jeong-Woong;Chun, Myung-Geun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • 제14권7호
    • /
    • pp.878-882
    • /
    • 2004
  • In this paper, we propose a hierarchical hybrid neural network for detecting faults of induction motor. Implementing the classifier based on the input and output data, we apply appropriate transform and classification method at each step. In the proposed method, after obtaining the current of state of motor for each period, we transform it by Principle Component Analysis(PCA) to reduce its dimension. Before the training process, we use the conditional Fuzzy C-means(FCM) for obtaining the initial parameters of neural network for more effective learning procedure. From the various simulations, we find that the proposed method shows better performance to detect and diagnosis of induction motor and compare than other methods.