• Title/Summary/Keyword: neural network procedure

Search Result 349, Processing Time 0.109 seconds

Seismic retrofit of steel structures with re-centering friction devices using genetic algorithm and artificial neural network

  • Mohamed Noureldin;Masoum M. Gharagoz;Jinkoo Kim
    • Steel and Composite Structures
    • /
    • v.47 no.2
    • /
    • pp.167-184
    • /
    • 2023
  • In this study, a new recentering friction device (RFD) to retrofit steel moment frame structures is introduced. The device provides both self-centering and energy dissipation capabilities for the retrofitted structure. A hybrid performance-based seismic design procedure considering multiple limit states is proposed for designing the device and the retrofitted structure. The design of the RFD is achieved by modifying the conventional performance-based seismic design (PBSD) procedure using computational intelligence techniques, namely, genetic algorithm (GA) and artificial neural network (ANN). Numerous nonlinear time-history response analyses (NLTHAs) are conducted on multi-degree of freedom (MDOF) and single-degree of freedom (SDOF) systems to train and validate the ANN to achieve high prediction accuracy. The proposed procedure and the new RFD are assessed using 2D and 3D models globally and locally. Globally, the effectiveness of the proposed device is assessed by conducting NLTHAs to check the maximum inter-story drift ratio (MIDR). Seismic fragilities of the retrofitted models are investigated by constructing fragility curves of the models for different limit states. After that, seismic life cycle cost (LCC) is estimated for the models with and without the retrofit. Locally, the stress concentration at the contact point of the RFD and the existing steel frame is checked being within acceptable limits using finite element modeling (FEM). The RFD showed its effectiveness in minimizing MIDR and eliminating residual drift for low to mid-rise steel frames models tested. GA and ANN proved to be crucial integrated parts in the modified PBSD to achieve the required seismic performance at different limit states with reasonable computational cost. ANN showed a very high prediction accuracy for transformation between MDOF and SDOF systems. Also, the proposed retrofit showed its efficiency in enhancing the seismic fragility and reducing the LCC significantly compared to the un-retrofitted models.

Experimental calibration of forward and inverse neural networks for rotary type magnetorheological damper

  • Bhowmik, Subrata;Weber, Felix;Hogsberg, Jan
    • Structural Engineering and Mechanics
    • /
    • v.46 no.5
    • /
    • pp.673-693
    • /
    • 2013
  • This paper presents a systematic design and training procedure for the feed-forward back-propagation neural network (NN) modeling of both forward and inverse behavior of a rotary magnetorheological (MR) damper based on experimental data. For the forward damper model, with damper force as output, an optimization procedure demonstrates accurate training of the NN architecture with only current and velocity as input states. For the inverse damper model, with current as output, the absolute value of velocity and force are used as input states to avoid negative current spikes when tracking a desired damper force. The forward and inverse damper models are trained and validated experimentally, combining a limited number of harmonic displacement records, and constant and half-sinusoidal current records. In general the validation shows accurate results for both forward and inverse damper models, where the observed modeling errors for the inverse model can be related to knocking effects in the measured force due to the bearing plays between hydraulic piston and MR damper rod. Finally, the validated models are used to emulate pure viscous damping. Comparison of numerical and experimental results demonstrates good agreement in the post-yield region of the MR damper, while the main error of the inverse NN occurs in the pre-yield region where the inverse NN overestimates the current to track the desired viscous force.

The Development of Two-Person Janggi Board Game Using Backpropagation Neural Network and Reinforcement Learning (역전파 신경회로망과 강화학습을 이용한 2인용 장기보드게임 개발)

  • Park, In-Kue;Jung, Kwang-Ho
    • Journal of Korea Game Society
    • /
    • v.1 no.1
    • /
    • pp.61-67
    • /
    • 2001
  • This paper describes a program which learns good strategies for two-poison, deterministic, zero-sum board games of perfect information. The program learns by simply playing the game against either a human or computer opponent. The results of the program's teaming of a lot of games are reported. The program consists of search kernel and a move generator module. Only the move generator is modified to reflect the rules of the game to be played. The kernel uses a temporal difference procedure combined with a backpropagation neural network to team good evaluation functions for the game being played. Central to the performance of the program is the search procedure. This is a the capture tree search used in most successful janggi playing programs. It is based on the idea of using search to correct errors in evaluations of positions. This procedure is described, analyzed, tested, and implemented in the game-teaming program. Both the test results and the performance of the program confirm the results of the analysis which indicate that search improves game playing performance for sufficiently accurate evaluation functions.

  • PDF

Characterization and modeling of a self-sensing MR damper under harmonic loading

  • Chen, Z.H.;Ni, Y.Q.;Or, S.W.
    • Smart Structures and Systems
    • /
    • v.15 no.4
    • /
    • pp.1103-1120
    • /
    • 2015
  • A self-sensing magnetorheological (MR) damper with embedded piezoelectric force sensor has recently been devised to facilitate real-time close-looped control of structural vibration in a simple and reliable manner. The development and characterization of the self-sensing MR damper are presented based on experimental work, which demonstrates its reliable force sensing and controllable damping capabilities. With the use of experimental data acquired under harmonic loading, a nonparametric dynamic model is formulated to portray the nonlinear behaviors of the self-sensing MR damper based on NARX modeling and neural network techniques. The Bayesian regularization is adopted in the network training procedure to eschew overfitting problem and enhance generalization. Verification results indicate that the developed NARX network model accurately describes the forward dynamics of the self-sensing MR damper and has superior prediction performance and generalization capability over a Bouc-Wen parametric model.

Hair Removal on Face Images using a Deep Neural Network (심층 신경망을 이용한 얼굴 영상에서의 헤어 영역 제거)

  • Lumentut, Jonathan Samuel;Lee, Jungwoo;Park, In Kyu
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2019.06a
    • /
    • pp.163-165
    • /
    • 2019
  • The task of image denoising is gaining popularity in the computer vision research field. Its main objective of restoring the sharp image from given noisy input is demanded in all image processing procedure. In this work, we treat the process of residual hair removal on faces images similar to the task of image denoising. In particular, our method removes the residual hair that presents on the frontal or profile face images and in-paints it with the relevant skin color. To achieve this objective, we employ a deep neural network that able to perform both tasks in one time. Furthermore, simple technic of residual hair color augmentation is introduced to increase the number of training data. This approach is beneficial for improving the robustness of the network. Finally, we show that the experimental results demonstrate the superiority of our network in both quantitative and qualitative performances.

  • PDF

A Study of Land Suitability Analysis by Integrating GSIS with Artificial Neural Networks (GSIS와 인공신경망의 결합에 의한 토지적합성분석에 관한 연구)

  • 양옥진;정영동
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.18 no.2
    • /
    • pp.179-189
    • /
    • 2000
  • This study is tried to organic combination in implementing the suitability analysis of urban landuse between GSIS and ANN(Artificial Neural Network). ANN has merit that can decide rationally connectivity weights among neural network nodes through procedure of learning. It is estimated to be possible that replacing the weight among factors needed in spatial analysis of the connectivity weight on neural network. This study is composed of two kinds of neural networks to be executed. First neural network was used in the suitability analysis of landuse and second one was oriented to analyze of optimum landuse pattern. These neural networks were learned with back-propagation algorithm using the steepest gradient which is embodied by C++ program and used sigmoid function as a active function. Analysis results show landuse suitability map and optimum landuse pattern of study area consisted of residental, commercial. industrial and green zone in present zoning system. Each result map was written by the Grid format of Arc/Info. Also, suitability area presented in the suitability map and optimum landuse pattern show distribution pattern consistent with theroretical concept or urban landuse plan in aspect of location and space structure.

  • PDF

Neural network based approach for rapid prediction of deflections in RC beams considering cracking

  • Patel, K.A.;Chaudhary, Sandeep;Nagpal, A.K.
    • Computers and Concrete
    • /
    • v.19 no.3
    • /
    • pp.293-303
    • /
    • 2017
  • Maximum deflection in a beam is a serviceability design criterion and occurs generally at or close to the mid-span. This paper presents a methodology using neural networks for rapid prediction of mid-span deflections in reinforced concrete beams subjected to service load. The closed form expressions are further obtained from the trained neural networks. The closed form expressions take into account cracking in concrete at in-span and at near the interior supports and tension stiffening effect. The expressions predict the inelastic deflections (incorporating the concrete cracking) from the elastic moments and the elastic deflections (neglecting the concrete cracking). Five separate neural networks are trained since these have been postulated to represent all beams having any number of spans. The training, validating, and testing data sets for the neural networks are generated using an analytical-numerical procedure of analysis. The proposed expressions have been verified by comparison with the experimental results reported elsewhere and also by comparison with the finite element method (FEM). The proposed expressions, at minimal input data and minimal computation effort, yield results that are close to FEM results. The expressions can be used in every day design since the errors are found to be small.

Training an Artificial Neural Network (ANN) to Control the Tap Changer of Parallel Transformers for a Closed Primary Bus

  • Sedaghati, Alireza
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1042-1047
    • /
    • 2004
  • Voltage control is an essential part of the electric energy transmission and distribution system to maintain proper voltage limit at the consumer's terminal. Besides the generating units that provide the basic voltage control, there are many additional voltage-controlling agents e.g., shunt capacitors, shunt reactors, static VAr compensators, regulating transformers mentioned in [1], [2]. The most popular one, among all those agents for controlling voltage levels at the distribution and transmission system, is the on-load tap changer transformer. It serves two functions-energy transformation in different voltage levels and the voltage control. Artificial Neural Network (ANN) has been realized as a convenient tool that can be used in controlling the on load tap changer in the distribution transformers. Usage of the ANN in this area needs suitable training and testing data for performance analysis before the practical application. This paper briefly describes a procedure of processing the data to train an Artificial Neural Network (ANN) to control the tap changer operating decision of parallel transformers for a closed primary bus. The data set are used to train a two layer ANN using three different neural net learning algorithms, namely, Standard Backpropagation [3], Bayesian Regularization [4] and Scaled Conjugate Gradient [5]. The experimental results are presented including performance analysis.

  • PDF

Artificial Neural Network Prediction of Normalized Polarity Parameter for Various Solvents with Diverse Chemical Structures

  • Habibi-Yangjeh, Aziz
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.9
    • /
    • pp.1472-1476
    • /
    • 2007
  • Artificial neural networks (ANNs) are successfully developed for the modeling and prediction of normalized polarity parameter (ETN) of 216 various solvents with diverse chemical structures using a quantitative-structure property relationship. ANN with architecture 5-9-1 is generated using five molecular descriptors appearing in the multi-parameter linear regression (MLR) model. The most positive charge of a hydrogen atom (q+), total charge in molecule (qt), molecular volume of solvent (Vm), dipole moment (μ) and polarizability term (πI) are input descriptors and its output is ETN. It is found that properly selected and trained neural network with 192 solvents could fairly represent the dependence of normalized polarity parameter on molecular descriptors. For evaluation of the predictive power of the generated ANN, an optimized network is applied for prediction of the ETN values of 24 solvents in the prediction set, which are not used in the optimization procedure. Correlation coefficient (R) and root mean square error (RMSE) of 0.903 and 0.0887 for prediction set by MLR model should be compared with the values of 0.985 and 0.0375 by ANN model. These improvements are due to the fact that the ETN of solvents shows non-linear correlations with the molecular descriptors.

Prediction of moments in composite frames considering cracking and time effects using neural network models

  • Pendharkar, Umesh;Chaudhary, Sandeep;Nagpal, A.K.
    • Structural Engineering and Mechanics
    • /
    • v.39 no.2
    • /
    • pp.267-285
    • /
    • 2011
  • There can be a significant amount of moment redistribution in composite frames consisting of steel columns and composite beams, due to cracking, creep and shrinkage of concrete. Considerable amount of computational effort is required for taking into account these effects for large composite frames. A methodology has been presented in this paper for taking into account these effects. In the methodology that has been demonstrated for moderately high frames, neural network models are developed for rapid prediction of the inelastic moments (typically for 20 years, considering instantaneous cracking, and time effects, i.e., creep and shrinkage, in concrete) at a joint in a frame from the elastic moments (neglecting instantaneous cracking and time effects). The proposed models predict the inelastic moment ratios (ratio of elastic moment to inelastic moment) using eleven input parameters for interior joints and seven input parameters for exterior joints. The training and testing data sets are generated using a hybrid procedure developed by the authors. The neural network models have been validated for frames of different number of spans and storeys. The models drastically reduce the computational effort and predict the inelastic moments, with reasonable accuracy for practical purposes, from the elastic moments, that can be obtained from any of the readily available software.