제어로봇시스템학회:학술대회논문집
- 2004.08a
- /
- Pages.1042-1047
- /
- 2004
Training an Artificial Neural Network (ANN) to Control the Tap Changer of Parallel Transformers for a Closed Primary Bus
Abstract
Voltage control is an essential part of the electric energy transmission and distribution system to maintain proper voltage limit at the consumer's terminal. Besides the generating units that provide the basic voltage control, there are many additional voltage-controlling agents e.g., shunt capacitors, shunt reactors, static VAr compensators, regulating transformers mentioned in [1], [2]. The most popular one, among all those agents for controlling voltage levels at the distribution and transmission system, is the on-load tap changer transformer. It serves two functions-energy transformation in different voltage levels and the voltage control. Artificial Neural Network (ANN) has been realized as a convenient tool that can be used in controlling the on load tap changer in the distribution transformers. Usage of the ANN in this area needs suitable training and testing data for performance analysis before the practical application. This paper briefly describes a procedure of processing the data to train an Artificial Neural Network (ANN) to control the tap changer operating decision of parallel transformers for a closed primary bus. The data set are used to train a two layer ANN using three different neural net learning algorithms, namely, Standard Backpropagation [3], Bayesian Regularization [4] and Scaled Conjugate Gradient [5]. The experimental results are presented including performance analysis.
Keywords