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Artificial neural networks (ANNs) are successfully developed for the modeling and prediction of normalized 
polarity parameter (Etn) of 216 various solvents with diverse chemical structures using a quantitative-structure 
property relationship. ANN with architecture 5-9-1 is generated using five molecular descriptors appearing in 
the multi-parameter linear regression (MLR) model. The most positive charge of a hydrogen atom (q+), total 
charge in molecule (qt), molecular volume of solvent (Vm), dipole moment (Q) and polarizability term (蔺)are 
input descriptors and its output is Etn. It is found that properly selected and trained neural network with 192 
solvents could fairly represent the dependence of normalized polarity parameter on molecular descriptors. For 
evaluation of the predictive power of the generated ANN, an optimized network is applied for prediction of the 
Etn values of 24 solvents in the prediction set, which are not used in the optimization procedure. Correlation 
coefficient (R) and root mean square error (RMSE) of 0.903 and 0.0887 for prediction set by MLR model 
should be compared with the values of 0.985 and 0.0375 by ANN model. These improvements are due to the 
fact that the Etn of solvents shows non-linear correlations with the molecular descriptors.
Key Words : Quantitative-structure property relationship, Normalized polarity parameter, Artificial neural 
networks, Theoretical descriptors

Introduction

The energetic level of molecules may be modified by 
interactions with surrounding molecules of solvents and it
may be difficult to relate chemical properties to molecular 
structures.1 The strong influence of solvent on chemical and 
physical processes (for example, reaction rates, selectivity, 
chemical equilibria, position and intensity of spectral
absorption bands and liquid chromatographic separations, 
etc.) has well established.1-8 The use of solvatochromic 
indicators is a suitable method for studing solute-solvent 
interactions, since the transition energy of the indicators 
depends on the solvation’s sphere composition and proper- 
ties.1 The solvatochromic parameter for measuring empiri
cally the polarity of solvents, ET(30), is calculated from the 
maxima of absorbance of the betaine dye as a solution in the 
solvent under investigation at 25 oC and at a pressure of 0.1 
MPa expressed in wavenumber.1 The solvatochromic para
meter is demonstrated to be successful in correlating a wide 
range of chemical and physical properties involving solute
solvent interactions as well as biological activities of 
compounds.1 Normalized polarity parameter (ETN) is a 
dimensionless “normalized” scale, defined by equation (1) 
in reference to tetramethylsilane (TMS) and water.1,2

Et(30) - Et(30)tms-------------------------------
Et (30) Water - ET(30)TMS

(1)

The macroscopic (bulk) properties of chemical compounds 
clearly depend on their microscopic (structural) characteri
stics. Because of importance of solvent effects, it has been of 

the highest interest to develop quantitative structure pro- 
perty/activity relationships (QSPR/QSAR), which reflect 
intermolecular interactions in dense media. Such QSPR/ 
QSAR correlation equations are usually multi-parametric.2-7 
To obtain a significant correlation, it is crucial that ap
propriate descriptors be employed.9 Famini et al. used 
theoretical linear solvation energy relationship (TLSER) 
methodology to correlate ETN of 30 solvents with molecular 
descriptors.10 The authors concluded that by the TLSER 
could predict ETN values for various solvents and provide 
better understanding of Etn depend on molecular para
meters. These descriptors have small cross-correlation, that 
is to say the descriptors reflect a particular microscopic 
property nearly without “mixing” or contamination from 
other descriptors.10-18

Table 1 demonstrates the molecular descriptors that have 
been used in this article. Vm is molecular volume of solvent 
that inversely proportional to the cohesion energy of 
molecules. The polarizability term (ni) is obtained by 
dividing the polarizability volume by the molecular volume 
to produce a unitless, size independent quantity, which 
indicates the ease with which the electron cloud may be 
moved or polarized. Dipole moment (Q) and total charge in 
molecule (qt) terms demonstrate dipole-dipole interactions. 
The hydrogen-bond donating ability is divided into two 
components: % (the energy difference between the 玮omo of 
water and £lumo of solvent) and q+ (the most positive charge 
of a hydrogen atom) of solvent molecule. Analogously, the 
hydrogen-bond accepting ability is divided into two com
ponents: £b (the energy difference between the £lumo of 
water and £homo of solvent) and q- (the most negative
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Table 1. The molecular descriptors used in the MLR and ANN 
models"

Symbol Name Definition Units

Vn Molecular volume Molecular volume A3
n Polarizability index Polarizability/Vm none
£a Covalent HB acidity 0.3-0.01(El - Ehw) heV
q+ Electrostatic HB acidity Maximum(+) charge on an acu

H atom
色 Covalent HB basicity 0.3-0.01(Elw - Eh) heV
q- Electrostatic HB basicity Maximum(-) charge on an acu

atom
qt Total charge Total charge on molecule acu
k Dipole moment Dipole moment D
aHev = hecto-electron volt (1 heV = 100 ev = 9.6485 x 103 kJmol-1); acu 
=atomic charge unit; D = debye; HB = hydrogen bond; El = LUMO 
energy and Eh = HOMO energy of the solvent; Elw and Ehw refer to the 
LUMO and HOMO energy for water, respectively.

atomic charge) of solvent.11-18
Various methods for constructing QSAR/QSPR models 

have been used including multi-parameter linear regression 
(MLR), principal component analysis (PCA) and partial 
least-squares regression (PLS). In addition, artificial neural 
networks (ANNs) have become popular due to their success 
where complex non-linear relationships exist amongst 
data.19-21 ANNs are biologically inspired computer programs 
designed to simulate the way in which the human brain 
processes information. ANNs gather their knowledge by 
detecting the patterns and relationships in data and learned 
(or rained) through experience, not from programming. 
There are many types of neural networks designed by now 
and new ones are invented every week.22 The behavior of a 
neural network is determined by transfer functions of its 
neurons, by learning rule, and by the architecture itself. An 
ANN is formed from artificial neuron or processing elements 
(PE), connected with coefficients (weights), which constitute 
the neural structure and are organized in layers. The first 
layer is termed the input layer, and the last layer is the output 
layer. The layers of neurons between the input and output 
layers are called hidden layers. The wide applicability of 
ANNs stems from their flexibility and ability to model non
linear systems without prior knowledge of an empirical 
model. Neural networks do not need on explicit formulation 
of the mathematical or physical relationships of the handled 
problem. These give ANNs an advantage over traditional 
fitting methods for some chemical application. For these 
reason in recent years, ANNs have been used to a wide 
variety of chemical problems such as simulation of mass 
spectra, ion interaction chromatography, aqueous solubility 
and partition coefficient, simulation of nuclear magnetic 
resonance spectra, prediction of bioconcentration factor, 
solvent effects on reaction rate, prediction of normalized 
polarity parameter in mixed solvent systems and dissociation 
constant of acids.23-39

The main aim of the present work is to develop a QSPR 
model based on molecular descriptors using ANN for 

modeling and prediction of ETN values for various solvents 
(including 216 solvents) with diverse chemical structures. In 
the first step, a MLR model was constructed. Then for 
inspection of non-linear interactions/relation between differ
ent parameters of solvents in the model, an ANN model was 
generated for the prediction of ETN values and the results 
were compared with the experimental and calculated values 
using MLR model.

Theory

A detailed description of theory behind a neural network 
has been adequately described by different researchers.19-21 
There are many types of neural network architectures, but 
the type that has been most useful for QSAR/QSPR studies 
is the multilayer feed - forward network with back-propa
gation (BP) learning rule.22 The number of neurons in the 
input and output layers are defined by system's properties. 
The number of neurons in the hidden layer could be 
considered as an adjustable parameter, which should be 
optimized. The input layer receives the experimental or 
theoretical information. The output layer produces the 
calculated values of dependent variable. The use of ANNs 
consists of two steps: "training” and "prediction”. In the 
training phase the optimum structure, weight coefficients 
and biases are searched for. These parameters are found 
from a training and validation data sets. After the training 
phase, the trained network can be used to predict (or 
calculate) the outputs from a set of inputs. ANNs allow one 
to estimate relationships between input variables and one or 
several output dependent variables. Information from inputs 
is fed forward through the network to optimize the weights 
between neurons. Optimization of the weights is made by 
backward propagation of the error during training or learn
ing phase. The ANN reads the input and target values in the 
training data set and changes the values of the weighted links 
to reduce the difference between the calculated output and 
target values. The error between output and target values is 
minimized across many training cycles until network reaches 
specified level of accuracy. If a network is left to train for too 
long, however, it will overtrain and will lose the ability to 
generalize.34-37

Methods and Procedure

Data set. As first step for developing the MLR and ANN 
models, the molecular descriptors should be generate. 
Normalized polarity parameter, and molecular volume of 
solvents are literature values.1,40 In order to calculate the 
theoretical descriptors, the z-matrices (molecular models) 
were constructed with the aid of HyperChem 5.01 and 
molecular structures were optimized using AM1 algorithm. 
In order to calculate the theoretical descriptors and to find 
optimized geometries, the molecular geometries of molecules 
were further optimized with the same algorithm in MOPAC 
version 6. The molecules in the data sets are including: 
alkanes, alkenes, haloalkanes, haloalkenes, cycloalkanes, 
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cycloalkenes, alcohols, esters, ethers, ketones, amines, nitriles, 
amides, acids, phenols, hetrocyclic, nitro and aromatic 
compounds. The molecular descriptors were calculated for 
216 solvents. The data set was randomly divided into three 
groups: a training set, a validation set and a prediction set 
consisting of 168, 24 and 24 molecules, respectively. The 
training and validation sets were used for the model 
generation and the prediction set was used for the evaluation 
of the generated model, because a prediction set is a better 
estimator of the ANN generalization ability than a validation 
(monitoring) set.41

Linear correlations. MLR model was developed for 
prediction of normalized polarity parameter by molecular 
descriptors. The method of stepwise multi-parameter linear 
regression was used to select the most important descriptors 
and to calculate the coefficients relating the ETN to the 
descriptors. The MLR models were generated using spss/pc 
software package. Quality of the equation was indicated by 
the root mean square error (RMSE), Fisher index of quality 
(F) and correlation coefficient (R).

Neural network generation. The specification of a 
typical neural network model requires the choice of the type 
of inputs, the number of hidden layers, the number of 
neurons in each hidden layer and the connection structure 
between the inputs and the output layers. The number of 
input nodes in the ANNs was equal to the number of 
molecular descriptors in the MLR model. A three-layer 
network with a sigmoidal transfer function was designed. 
The initial weights were randomly selected between 0 and 1. 
Before training, the input and output values were normalized 
between 0.1 and 0.9. The optimization of the weights and 
biases was carried out according to the resilient back- 
propagation algorithm.42 For evaluation of the predictive 
power of the network, the trained ANN was used to predict 
ETN values of the molecules included in the prediction set. 
The performances of training, validation and prediction of 
ANNs are evaluated by RMSE, which is defined as follows:

+ 0.033(士 0.007)卩 + 0.0645(士 0.012) q
-0.115(±0.024)Vm - 2.583(± 0.577) n (3)

(n = 168, R = 0.874, RMSE = 0.1043 F5J62 = 104.92)
爲+ = 0.737,伉=0.196,恨=0.245,爲=-0.208,阮=-0.176

It is clear that from eight descriptors in Table 1, five de
scriptors are important in correlation of Etn vs. the molecular 
descriptors. As can be seen, Etn of solvents increase with 
increasing q+,卩 and qt and decrease with Vm and n Also 
effects of q+ and qt are higher than that of the other 
descriptors, because standardized coefficients (恨 values) of 
q+ and qt are higher than that of the other descriptors. The 
equation is similar to the model obtained for 30 solvents.10 
With increasing Vm and n descriptors, normalized polarity 
parameter decrease. Because, both descriptors are indicative 
of dispersion effects.10 Descriptor for electrostatic hydrogen
bond acidity is q+. With increasing this descriptor, the hydro
gen-bonding interactions between the solvent molecules and 
the betaine dye increases. Dipole-dipole interactions bet
ween the molecules of solvents and betaine dye increases 
with increasing 卩 and qt descriptors.

The next step in this work was the generation of ANN 
model. There are no rigorous theoretical principles for 
choosing the proper network topology, so different structures 
were tested in order to obtain the optimal hidden neurons 
and training cycles.37 Before training the network, the 
number of nodes in the hidden layer was optimized. In order 
to optimize the number of nodes in the hidden layer, several 
training sessions were conducted with different numbers of 
hidden nodes (from one to twelve). The root mean squared 
error of training (RMSET) and validation (RMSEV) sets 
were obtained at various iterations for different number of 
neurons at the hidden layer and the minimum value of 
RMSEV was recorded as the optimum value. Plot of 
RMSET and RMSEV vs. the number of nodes in the hidden 
layer has been shown in Figure 1. It is clear that the nine

J
N / pexp_ Pcal、2 
£ J一"丿 
i=1 N (2)

Where Piexp and Pical are experimental and calculated values 
of ETN with ANN model and N denote the number of data 
points.

The processing of the data was carried on Intel Pentium III 
processor, 800 MHz PC with 256 Mb of RAM in windows 
XP environment using Matlab 6.5.42 The neural networks 
were implemented using Neural Network Toolbox Ver. 4.0 
for Matlab.43

Results and Discussion

Multi-parameter linear correlation of Etn values vs. the 
molecular descriptors for 168 solvents in the training set 
gives equation (3).

Figure 1. Plot of RMSE for training and validation sets vs. the 
number of nodes in hidden layer.Etn = 0.391(± 0.066) + 2.375(± 0.126)q+
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Figure 2. Plot of RMSE for calculated values of Etn for training 
and validation sets vs. the number of iterations.
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Figure 3. Plot of the calculated values of Etn from the ANN model 
vs. the experimental values of it for prediction set.

Experimental

nodes in hidden layer is optimum value.
This network consists of five inputs (including q+,卩, n, 

Vm and qt), the same descriptors in the MLR model, and one 
output for Etn. Then an ANN with architecture 5-9-1 was 
generated. It is note worthy that training of the network was 
stopped when the RMSEV started to increases i.e. when 
overtraining begins. The overtraining causes the ANN to 
loose its prediction power.37 Therefore, during training of the 
networks, it is desirable that iterations are stopped when 
overtraining begins. To control the overtraining of the 
network during the training procedure, the values of RMSET 
and RMSEV were calculated and recorded to monitor the 
extent of the learning in various iterations. Results obtained 
showed that after 10000 iterations the value of RMSEV 
started to increase and overfitting began (Figure 2).

The generated ANN was then trained using the training set 
for the optimization of the weights and biases. For the 
evaluation of the predictive power of the generated ANN, an 
optimized network was applied for prediction of the Etn 
values of various solvents in the prediction set, which were 
not used in the modeling procedure. Then calculated values 
of the Etn for various solvents in training, validation and 
prediction sets using the ANN model were obtained.

Figure 3 demonstrates plot of the calculated values of Etn 
for 24 solvents in prediction set versus the experimental 
values of it.

As expected, the calculated values of Etn are in good 
agreement with those of the experimental values. The corre
lation equation for the calculated values of Etn in prediction 
set using the ANN model and the experimental values is as 
follows:

ETN(cal) = 1.0444ETN(exp) - 0.0199 (4)

(R = 0.985; RMSE = 0.0375; F1,23 = 741.14)

Plot of the residual values for Etn of solvents in prediction 
set versus the experimental values of it has been demon
strated in Figure 4.
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Figure 4. Plot of the Residual for calculated values of Etn from the 
ANN model vs. the experimental values of it for prediction set.

As can be seen the model did not show proportional and 
systematic error, because the slope (a = 1.0444) and inter
cept (b = 0.0199) of the correlation equation are not 
significantly different from unity and zero, respectively and 
the propagation of errors in both sides of zero are random 
shown in Figure 4.

Table 2 compares the results obtained using the MLR and 
ANN models. The correlation coefficient (R) and RMSE of 
the models for total, training, validation and prediction sets 
show potential of the ANN model for prediction of ETN 
values of various solvents.

As a result, it was found that properly selected and trained 
neural network could fairly represent the dependence of 
normalized polarity parameter on molecular descriptors. 
Then the optimized neural network could simulate the 
complicated nonlinear relationship between ETN values and 
the molecular descriptors. The correlation coefficient (R) 
and RMSE are 0.903 and 0.0887 for the prediction set by the 
MLR model should be compared with the values of 0.985
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Table 2. Comparsion of statistical parameters obtained by the MLR and ANN models for correlation of normalized polarity parameter with 
molecular descriptors"

Model Rtot Rtrain Rvalid Rpred RMSEtot RMSEtrain RMSEvalid RMSEpred

MLR 0.876 0.874 0.871 0.903 0.1025 0.1043 0.1027 0.0887
ANN 0.973 0.971 0.975 0.985 0.0492 0.0510 0.0465 0.0375

a tot, train, valid and pred in subscript letters are referring to the total, training, validation and prediction sets.

and 0.0375, respectively, for the ANN model. It can be seen 
from Table 2 that although the parameters appearing in the 
MLR model are used as inputs for the generated ANN, the 
statistics is shown a large improvement. These improve
ments are due to the fact that Etn of the solvents shows non
linear correlations with the molecular descriptors.

Conclusions

A five-descriptor nonlinear computational neural network 
model has been developed for prediction of normalized 
polarity parameter for various solvents with diverse chemical 
structures using quantitative-structure property relationship. 
Comparison of the values of RMSE and other statistical 
parameters in Table 2 for training, validation and prediction 
sets for the models show superiority of the ANN model over 
the regression model. Root-mean square error of 0.0887 for 
the prediction set by the MLR model should be compared 
with the value of 0.0375 for the ANN model. Since the 
improvement of the results obtained using nonlinear model 
(ANN) is considerable, it can be concluded that the 
nonlinear characteristics of molecular descriptors on the Etn 
values of solvents is serious and interactions between vari
ous molecular descriptors are important. Then the optimized 
neural network could simulate the complicated nonlinear 
relationship between normalized polarity parameter and the 
molecular structure for various solvents.
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