Evasion, approach and predation are examples of innate behaviour that are fundamental for the survival of animals. Uniting these behaviours is the assessment of threat, which is required to select between these options. Far from being comprehensive, we give a broad review over recent studies utilising optic techniques that have identified neural circuits and genetic identities underlying these behaviours.
생물심리학적 관점에서,학습은 우리가 환경으로부터 얻은 정보를 뇌내 신경세표의 회로망으로 전이시키는 과정이라 할 수 있다. 학습과 기억의 생물할적 실체를 찾고자 하는 연구들에는,기억 또는 정보의 저장이 신경계내 시냅스수정의 방식으로 이루어진다는 가정하에,특정 유형의 학습과 관련된 신경회로를 규명하고 신경가소성의 기초를 밝히려는 노력들이 있었다.이와는 달리 신경계내 뉴련들로 연결된 복잡한 신경망의 형태들이 특정정보를 표상한다고 보고,학습과 기억에 관련된 신경구조물들의 상호작용 기초를 분석 하려는 노력들이 있었다.본 연구는,전자의 입장에서,학습과 기억에 필수적인 엔그램의 부위를 찾기 위하여 사용된느 연구방법과 주요 실험동물 모델체계들의 특성,그리고 이러한 모델체계들을 사용한 연구결과들을 개관하였다.즉,본 논고는 실험동물 모델체계를 사용하여 학습과 기억에 필수적으로 관여하는 기억흔적회로를 찾아내고,그 신경회로내에서 학습과 기억에 결정적인 신경의 가소적 변화가 일어나는 부위를 규명하며,학습과정중에 신경수준에서 일어나는 시냅스의 수정에 대한 신경생리적,생화학적 기제를 밝히고자 한 연구들을 개관하였다.
Journal of information and communication convergence engineering
/
제1권4호
/
pp.177-182
/
2003
Conventional multilayer feedforward artificial neural networks are very effective in dealing with spatial problems. To deal with problems with time dependency, some kinds of memory have to be built in the processing algorithm. In this paper we show how the newly proposed Serial Input Neuron (SIN) convolutional decoders can be derived. As an example, we derive the SIN decoder for rate code with constraint length 3. The SIN is tested in Gaussian channel and the results are compared to the results of the optimal Viterbi decoder. A SIN approach to decode convolutional codes is presented. No supervision is required. The decoder lends itself to pleasing implementations in hardware and processing codes with high speed in a time. However, the speed of the current circuits may set limits to the codes used. With increasing speeds of the circuits in the future, the proposed technique may become a tempting choice for decoding convolutional coding with long constraint lengths.
This paper presents a Neural Network Identification (NNI) method for modeling of highly complicated nonlinear and time varing human system with a pneumatically driven mock circulation system of Left Ventricular Assist Device(LVD). This system consists of electronic circuits and pneumatic driving circuits. The initation of systole and the pumping duration can be determined by the computer program. The line pressure from a pressure transducer inserted in the pneumatic line was recorded. System modeling is completed using the adaptively trained backpropagation learning algorithms with input variables, Heart Rate(HR), Systole-Diastole Rate(SDR), which can vary state of system, and preload, afterload, which indicate the systemic dynamic characteristics and output parameters are preload, afterload.
Implementation of memristor-based multilayer neural networks and their hardware-based learning architecture is investigated in this paper. Two major functions of neural networks which should be embedded in synapses are programmable memory and analog multiplication. "Memristor", which is a newly developed device, has two such major functions in it. In this paper, multilayer neural networks are implemented with memristors. A Random Weight Change algorithm is adopted and implemented in circuits for its learning. Its hardware-based learning on neural networks is two orders faster than its software counterpart.
본 논문에서는 캐리 전파가 없어 고속연산이 가능한 잉여 수 체계를 이용하여 고속으로 동작할 수 있는 역전파 신경회로망을 설계방법을 제안하였다. 설계된 신경회로망은 잉여수계를 이용한 MAC 연산기와 혼합계수 변환을 이용한 시그모이드 함수 연산 부로 구성되며, 설계된 회로는 VHDL로 기술하였고 Compass 툴로 합성하였다. 실험결과, 가장 나쁜 경로일 경우, 약 19nsec의 지연속도를 보였고, 기존의 실수 연산기에 비하여 약 40%정도 하드웨어 크기를 줄일 수 있었다. 본 논문에서 설계한 신경회로망은 실시간 처리를 요하는 병렬분산처리 시스템에 적용될 수 있을 것으로 기대된다.
Hopfield는 선형 제한조건을 갖는 선형프로그램밍을 풀 수 있는 신경회로망을 제안하였는 데, 이 논문에서는 제한조건함수가 비선형함수를 포함하는 일반적인 최적화문제를 해결할 수 있는 신경망으로 확장하였다. 또한, 최적화문제를 신경회로망에 매핑시키는 방법, 그리고 회로로 구성하는 방법들이 논의되었다.
Plasma processing plays a crucial role in fabricating integrated circuits (ICs). Manufacturing ICs in a cost effective way, it is increasingly demanded a computer model that predicts plasma properties to unknown process inputs. Physical models are limited in the prediction accuracy since they are subject to many assumptions. Expensive computation time is another hindrance that prevents their widespread used in manufacturing site. To circumvent these difficulties inherent in physical models, neural networks have been used to learn nonlinear plasma data. A generalized regression neural network (GRNN) [I] is one of the architectures that have been widely used to analyze complex chemical data. I...
Plasma processing plays a crucial role in fabricating integrated circuits (ICs). Manufacturing ICs in a cost effective way, it is increasingly demanded a computer model that predicts plasma properties to unknown process inputs. Physical models are limited in the prediction accuracy since they are subject to many assumptions. Expensive computation time is another hindrance that prevents their widespread used in manufacturing site. To circumvent these difficulties inherent in physical models, neural networks have been used to learn nonlinear plasma data [1]. Among many types of networks, a backpropagation neural network (BPNN) is the most widely used architecture. Many training variables are...
아날로그와 디지틀 합산 가능한 신경회로망회로를 제안한다. 제안된 회로는 Hopfield 신경회로망 모델을 사용하였으며, 연결강도들은 에너지함수를 이용해서 구하였다. NMOS를 이용하여 뉴론을 만들었고, 시뮬레이션결과는 거의 대부분의 경우가 전체 최소점으로 수렴함을 보였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.