DOI QR코드

DOI QR Code

Neural and Genetic Basis of Evasion, Approach and Predation

  • Park, Seahyung (Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST)) ;
  • Ryoo, Jia (Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST)) ;
  • Kim, Daesoo (Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST))
  • Received : 2021.11.17
  • Accepted : 2022.01.11
  • Published : 2022.02.28

Abstract

Evasion, approach and predation are examples of innate behaviour that are fundamental for the survival of animals. Uniting these behaviours is the assessment of threat, which is required to select between these options. Far from being comprehensive, we give a broad review over recent studies utilising optic techniques that have identified neural circuits and genetic identities underlying these behaviours.

Keywords

Acknowledgement

This work was supported by Samsung Science and Technology Foundation under Project Number SSTF-BA1301-53, and KAIST Global Singularity Research Program. S.P. was supported by National Research Foundation of Korea (NRF-2021R1I1A1A01060418).

References

  1. Ahmadlou, M., Houba, J.H., van Vierbergen, J.F., Giannouli, M., Gimenez, G.A., van Weeghel, C., Darbanfouladi, M., Shirazi, M.Y., Dziubek, J., Kacem, M., et al. (2021). A cell type-specific cortico-subcortical brain circuit for investigatory and novelty-seeking behavior. Science 372, eabe9681. https://doi.org/10.1126/science.abe9681
  2. Chiang, M.C., Nguyen, E.K., Canto-Bustos, M., Papale, A.E., Oswald, A.M.M., and Ross, S.E. (2020). Divergent neural pathways emanating from the lateral parabrachial nucleus mediate distinct components of the pain response. Neuron 106, 927-939.e5. https://doi.org/10.1016/j.neuron.2020.03.014
  3. Deng, H., Xiao, X., and Wang, Z. (2016). Periaqueductal gray neuronal activities underlie different aspects of defensive behaviors. J. Neurosci. 36, 7580-7588. https://doi.org/10.1523/JNEUROSCI.4425-15.2016
  4. Evans, D.A., Stempel, A.V., Vale, R., Ruehle, S., Lefler, Y., and Branco, T. (2018). A synaptic threshold mechanism for computing escape decisions. Nature 558, 590-594. https://doi.org/10.1038/s41586-018-0244-6
  5. Han, W., Tellez, L.A., Rangel, M.J., Jr., Motta, S.C., Zhang, X., Perez, I.O., Canteras, N.S., Shammah-Lagnado, S.J., van den Pol, A.N., and de Araujo, I.E. (2017). Integrated control of predatory hunting by the central nucleus of the amygdala. Cell 168, 311-324.e18. https://doi.org/10.1016/j.cell.2016.12.027
  6. Kennedy, A., Kunwar, P.S., Li, L.Y., Stagkourakis, S., Wagenaar, D.A., and Anderson, D.J. (2020). Stimulus-specific hypothalamic encoding of a persistent defensive state. Nature 586, 730-734. https://doi.org/10.1038/s41586-020-2728-4
  7. Kim, J., Lee, S., Fang, Y.Y., Shin, A., Park, S., Hashikawa, K., Bhat, S., Kim, D., Sohn, J.W., Lin, D., et al. (2019). Rapid, biphasic CRF neuronal responses encode positive and negative valence. Nat. Neurosci. 22, 576-585. https://doi.org/10.1038/s41593-019-0342-2
  8. Kunwar, P.S., Zelikowsky, M., Remedios, R., Cai, H., Yilmaz, M., Meister, M., and Anderson, D.J. (2015). Ventromedial hypothalamic neurons control a defensive emotion state. Elife 4, e06633. https://doi.org/10.7554/elife.06633
  9. Li, Y., Zeng, J., Zhang, J., Yue, C., Zhong, W., Liu, Z., Feng, Q., and Luo, M. (2018). Hypothalamic circuits for predation and evasion. Neuron 97, 911-924.e5. https://doi.org/10.1016/j.neuron.2018.01.005
  10. Mangieri, L.R., Jiang, Z., Lu, Y., Xu, Y., Cassidy, R.M., Justice, N., Xu, Y., Arenkiel, B.R., and Tong, Q. (2019). Defensive behaviors driven by a hypothalamic-ventral midbrain circuit. eNeuro 6, ENEURO.0156-19.2019.
  11. McNaughton, N. and Corr, P.J. (2018). Survival circuits and risk assessment. Curr. Opin. Behav. Sci. 24, 14-20. https://doi.org/10.1016/j.cobeha.2018.01.018
  12. Park, S.G., Jeong, Y.C., Kim, D.G., Lee, M.H., Shin, A., Park, G., Ryoo, J., Hong, J., Bae, S., Kim, C.H., et al. (2018). Medial preoptic circuit induces hunting-like actions to target objects and prey. Nat. Neurosci. 21, 364-372. https://doi.org/10.1038/s41593-018-0072-x
  13. Reis, F.M., Lee, J.Y., Maesta-Pereira, S., Schuette, P.J., Chakerian, M., Liu, J., La-Vu, M.Q., Tobias, B.C., Ikebara, J.M., Kihara, A.H., et al. (2021). Dorsal periaqueductal gray ensembles represent approach and avoidance states. Elife 10, e64934. https://doi.org/10.7554/eLife.64934
  14. Rossier, D., La Franca, V., Salemi, T., Natale, S., and Gross, C.T. (2021). A neural circuit for competing approach and defense underlying prey capture. Proc. Natl. Acad. Sci. U. S. A. 118, e2013411118. https://doi.org/10.1073/pnas.2013411118
  15. Ryoo, J., Park, S., and Kim, D. (2021). An inhibitory medial preoptic circuit mediates innate exploration. Front. Neurosci. 15, 716147. https://doi.org/10.3389/fnins.2021.716147
  16. Shang, C., Liu, A., Li, D., Xie, Z., Chen, Z., Huang, M., Li, Y., Wang, Y., Shen, W.L., and Cao, P. (2019). A subcortical excitatory circuit for sensory-triggered predatory hunting in mice. Nat. Neurosci. 22, 909-920. https://doi.org/10.1038/s41593-019-0405-4
  17. Tovote, P., Esposito, M.S., Botta, P., Chaudun, F., Fadok, J.P., Markovic, M., Wolff, S.B., Ramakrishnan, C., Fenno, L., Deisseroth, K., et al. (2016). Midbrain circuits for defensive behaviour. Nature 534, 206-212. https://doi.org/10.1038/nature17996
  18. Viskaitis, P., Irvine, E.E., Smith, M.A., Choudhury, A.I., Alvarez-Curto, E., Glegola, J.A., Hardy, D.G., Pedroni, S.M., Pessoa, M.R.P., Fernando, A.B., et al. (2017). Modulation of SF1 neuron activity coordinately regulates both feeding behavior and associated emotional states. Cell Rep. 21, 3559-3572. https://doi.org/10.1016/j.celrep.2017.11.089
  19. Wang, L., Chen, I.Z., and Lin, D. (2015). Collateral pathways from the ventromedial hypothalamus mediate defensive behaviors. Neuron 85, 1344-1358. https://doi.org/10.1016/j.neuron.2014.12.025
  20. Zhang, G.W., Shen, L., Tao, C., Jung, A.H., Peng, B., Li, Z., Zhang, L.I., and Tao, H.W. (2021). Medial preoptic area antagonistically mediates stress-induced anxiety and parental behavior. Nat. Neurosci. 24, 516-528. https://doi.org/10.1038/s41593-020-00784-3
  21. Zhang, X. and van den Pol, A.N. (2017). Rapid binge-like eating and body weight gain driven by zona incerta GABA neuron activation. Science 356, 853-859. https://doi.org/10.1126/science.aam7100
  22. Zhao, Z.D., Chen, Z., Xiang, X., Hu, M., Xie, H., Jia, X., Cai, F., Cui, Y., Chen, Z., Qian, L., et al. (2019). Zona incerta GABAergic neurons integrate prey-related sensory signals and induce an appetitive drive to promote hunting. Nat. Neurosci. 22, 921-932. https://doi.org/10.1038/s41593-019-0404-5
  23. Zhou, Z., Liu, X., Chen, S., Zhang, Z., Liu, Y., Montardy, Q., Tang, Y., Wei, P., Liu, N., Li, L., et al. (2019). A VTA GABAergic neural circuit mediates visually evoked innate defensive responses. Neuron 103, 473-488.e6. https://doi.org/10.1016/j.neuron.2019.05.027