International Journal of KIMICS, Vol. 1, No. 4, December 2003

177

A Implementation of Simple Convolution Decoder
Using a Temporal Neural Networks

Hee-Tae Chung, Kyung-Hun Kim, Member, KIMICS

Abstract—Conventional multilayer feedforward artificial
neural networks are very effective in dealing with spatial
problems. To deal with problems with time dependency,
some kinds of memory have to be built in the processing
algorithm. In this paper we show how the newly proposed
Serial Input Neuron (SIN) convolutional decoders can be
derived. As an example, we derive the SIN decoder for
rate code with constraint length 3. The SIN is tested in
Gaussian channel and the results are compared to the
results of the optimal Viterbi decoder. A SIN approach to
decode convolutional codes is presented. No supervision is
required. The decoder lends itself to pleasing implementations
in hardware and processing codes with high speed in a
time. However, the speed of the current circuits may set
limits to the codes used. With increasing speeds of the
circuits in the future, the proposed technique may
become a tempting choice for decoding convolutional
coding with long constraint lengths.

Index Terms—Communication, Information

I. INTRODUCTION

Data transmission over a noisy and possibly distorted
channel leads usually to bit errors. To overcome this
problem, error correction codes (ECC) 1s used. A group
of such codes are the convolutional codes [1]. The
convolutional encoding process is very simple and can
be implemented using simple digital components. It is
seen that using such an implementation a very fast
decoder can be built. It is also noted that the proposed
decoder fits very well for VLSI circuits.

The design of the error correcting codes is predicated
upon the use of an algebraic code (the “generator
polynomial” or “generator matrix”) and some a priori
assumptions on the channel characteristics. In most
cases, these assumptions have been greatly simplified.
Specifically, most codes and associated channel
simulations assume the presence of additive white gaussian
noise (AWGN) and/or binary symmetric channel (BSC)
characteristics.

Manuscript received December 4, 2003.

H. T. Chung is with the Division of Digital Information
Engineering, Pusan University of Foreign Studies, Uam-Dong,
Nam-Gu, Pusan, 608-738, Korea(Tel : +82-51-640-3425, E-mail :
htchung@pufs.ac.kr)

K. H. Kim is with the Graduate School of Electronic & Computer
Engineering, Pusan University of Foreign Studies, Uam -Dong,
Nam-Gu, Pusan, 608-738, Korea(Tel : +82-51-640-3425, E-mail :
hunkk@orgio.net)

Conventional multilayer feedforward artificial neural
networks are very effective in dealing with spatial
problems. They are, however, not quite suitable in solving
temporal problems with time dependency, thus some
kinds of memory have to be built in the processing
algorithm. A popular approach is to introduce memory
with time delays so that the temporal problem can be
solved spatially. A temporal artificial neural computing
architecture is proposed based on the SIN by Huang and
Chiang[3],[4]. They designed two the SIN-based model
reference adaptive controllers for a class of non-
autonomous systems. Good output tracking performance
of the on-line learning controller implies that the SIN
must have some temporal signal processing ability. We
would like to investigate this ability of the SIN.

To deal with problems with time dependency using
artificial neural computing architecture, some kinds of
dynamic properties should be provided. According to
Elman [5], the artificial neural network is dynamic if it
has some memory. A common approach to introduce
memory is to use time delays so that the temporal
sequence can be buffered to form a spatial array and a
static mapping is then applicable to perform appropriate
processing.

Another way to introduce dynamic behavior is to
feedback appropriate information so that the representation
of time dependency is implicit. The network proposed
by Elman uses a buffer so that the output of the hidden
layer at time step interacts with the input signal at time
step. The feedback connections via the buffer enable
Elman networks to learn to process temporal as well as
Spatial patterns.

In Huang and Chiang[3], [4], the SIN was proposed
for constructing a universal function approximator defined
in the real line. In this paper, we would like to
investigate this ability of the SIN. Since the SIN contains
a feedback loop, some memory effect can be provided;
therefore, temporal signals can be processed. For most
conventional neural networks, network parameters (i.e.
weights and biases) are updated in the training phase,
and are fixed during operation. But, for the proposed
network, its parameters may have different values for
different time instants during the operation phase.
Therefore, we have to determine time trajectories of
these parameters before its actual operation. A direct
computation method will be introduced so that a set of
feasible parameters in the network parameter space can
be obtained. In here, it has been demonstrated by
simulations that the SIN decoder works well compared
with Viterbi algorithm. Because the SIN itself is very
simple compared with Viterbi algorithm, it seems possible
to implement it on a fast chip.

178 Hee-Tae Chung, Kyung-Hun Kim : A Implementation of Simple Convolution Decoder Using a Temporal Neural Networks

II. BASIC OPERATION OF THE SIN

In the Elman network, a buffer is designed to store the
current hidden layer output so that the output can interact
with next input. In this way, temporal information of the
input sequence can be processed. Instead of adding a
buffer, we allow the weight of the neuron to be replaced
by the previous summer output so that this kind of
feedback enables the neuron to process temporal
sequences. The replacement of the weight makes the
neuron behavior become dynamic. In order to have
proper mapping performance, a sequence of biases has to
be determined.

0,

— W, > s
Py /

b,

Fig. 1 Structure of the SIN.

Figure. 1 illustrates the structure of the SIN, where
p, €R, o, eRand p eR areinput, weight, and bias of
the SIN at time step k,k=1,---n, respectively. The
summation block denoted by ¥ performs a summation
operation of its two inputs to generate signal O, The

operation can be expressed by
0, = p,@, +b, 2.1

The activation function f can be selected as conventional
forms such as the hard limit function or a pure linear
function.

The output of the SIN is denoted by a, e R which is

calculated by a, = f(0,)- For most conventional artificial

neurons, the weight and bias are updated based on some
learning rules during its training phase, but fixed during
operation phase. In order to introduce temporal processing
ability into the new structure, we replace @, =1,,n—1

so that the weight at each time step will be fully affected
by the last state. The initial weight is a value to be
determined depending on the problem given. The sequence
of biases {b},k=1-,n is also to be found to enable

the neuron to give proper output. Determination of the
initial weight and the bias sequence can be done by direct

computation based on the neuron operation or via learning.

Let us assume that the initial weight and bias sequence
are determined, and the operation can be started with
k =1to have

o, =wp +h (2.2)

Since we are only concerned with the output after the
entire input sequence is presented, the values @,,i=1,---,n—1

are not computed. Before we proceed to the calculation
of g,at k=2, the weight @,is replaced by o,, and we
have

0,=w,p,+b,=0,p, +b, (2.3)

In the same manner, we may have the relation for
k=nas

On :a)npn +bn :On—lpn +bn (24)
And we may calculate the output of the neuron as
an zf(on):f(on—lpn+bn) (25)

For convenience of presentation, a simplified block in
Fig. 2 is used to represent a serial input neuron.

Py ay

—_— SIN

Fig. 2 Simplified the SIN representation.

II1. SIN LEARNING

From the previous section, we know that before using
the SIN on a given problem its initial weight, and a
sequence of bias terms p j=1,...,n have to be found.

Let us define b,=w, SO that the network parameters to
be determined become b,j=0,,n-1- In this section, a

modified operation of the SIN is suggested to approximate
real-valued functions defined on the real line.
From (2.2), the output of the SIN at the first time step is

o, =byp, +b, G.D
Likewise, the output of the second time step is
0, =0,p, +b =bbp, =bp, +b, (G.2)

The expression can be further written in a more
compact form

0,= i(br"ﬁlpnﬂ] (33)

The actual output becomes a,=f(o,) where £ is the

activation function. In the application of the SIN on
function approximation problems, the pure linear function
can be selected as the activation function. This gives the
SIN output

o= A(3[e T1r..)| G4

International Journal of KIMICS, Vol. 1, No. 4, December 2003

179

Now, assume that input Pok=1,--,n are identical

then define x=p, forall k.Let ¢, =b, . k=0,,n
and (3.4) can be further written as

=f[icrzr] (35)

Equation (3.5) indicates that the SIN output a,is anth

order polynomial with coefficients ¢ ,r=0,.--,n. Since

by the Stone-Weierstrass a continuous function on a cube
in R”can be uniformly approximated by a polynomial, the
SIN structure can be used in function approximation
applications.

Note that we have assumed x=p, forall f=1,....n

which implies that with the presentation of a specific
input, n+1 iterations in the SIN structure are performed to
produce the output g according to (3.1) Iterations times
is o(n) where n is the order of the approximating
polynomial which is specified by the user. Since computations
in the SIN involve only additions and multiplications, it is
very suitable to be implemented in current microcomputers
or DSPs.

Convergence of the polynomial in (3.5) is determined
by the convergence of the sequence constructed by its
coefficients [6]. The famous Cauchy-Hadamard theorem
indicates that the radius of convergence of the
polynomial in (3.5) is the reciprocal of the limit value of
the coefficient sequence if it is convergent; otherwise, it
is the reciprocal of the greatest limit points of the
coefficient sequence if it is bounded. If the polynomial is
not convergence nor bounded, the radius of convergence
is zero, and the polynomial converges only at a point,
Since the coefficients of (3.5) is updated from the SIN
learning, the convergence of the polynomial is guaranteed
as long as learning converges.

The learning rule is derived by a transformation of
(3.4) into some space where the perceptron rule is
applicable. Define a new set of variables z,k=0,--,n as

z,= 1,
n=r-i
z, = [[Pus 3:6)
=0
r=01,---,n-1.

Then (3.4) can be further written in the form
- f(ib,z,J _/(B'Z) 3.7
r=0

It is obvious that (3.7) is identical to the mapping
equation of a perceptron with multiple inputs and one
output. The vector B is the weight vector and Z is the input
vector. This implies that we may apply any learning rule
available to the perceptron to the learning of the SIN
after a transformation of its inputs using (3.6). In here we
apply the principles of performance learning to a single-
layer linear neural network. The Widrow-Hoff rule [7],
[8] can be used as

B(k+1)=B(k)+2y
[atarget (k) - an (k)]Z(k)

(3.8)

where y)01is learning rate and (5 is target value

of ¢ at th learning iteration.

IV. ENCODER

Assume a general convolutional encoder for rate code
with constraint length 3. The design of the ECC is
predicated upon the use of an algebraic code (the
“generator polynomial” or “generator matrix”) and some
a prioti assumptions on the channel characteristics. In most
cases, these assumptions have been greatly simplified.
Specifically, most codes and associated channel simulations
assume AWGN and/or binary symmetric channel (BSC)
characteristics.

AWGN

Input 'Convolutlonal + Sliding
Encoder 1 Window .

|
| |
]
|
!
1
Output <+— SIN
Decoder|
J

Fig. 3 Digital communication system with a the SIN ecoder.

Assume a general convolutional encoder for rate code
with constraint length 3. The design of the ECC is
predicated upon the use of an algebraic code (the “generator
polynomial” or “generator matrix™) and some a priori
assumptions on the channel characteristics. In most cases,
these assumptions have been greatly simplified. Specifically,
most codes and associated channel simulations assume
AWGN and/or binary symmetric channel (BSC) characteristics.

Output 1

Mi M2

% Output 2

Fig. 4 Convolutional encoder 1/2 rate.

Input

Figure 4 illustrates convolutional encoder with two
memories for 1/2 rate. For example, from Fig. 4 where
M1 and M2 are memories it is easily seen that the output
1s[110101001000101 10 0] when the input is
[1 1010 1]. The other example from Fig. 5, the output
is[11101001100110100110100101010
00110010100110011011 10)when the input
is [110101011101101}.

180 Hee-Tae Chung, Kyung-Hun Kim : A implementation of Simple Convolution Decoder Using a Temporal Neural Networks

{/l\\‘447 ()u;;utl
)
M1 M2
Input
(T

Output2

3

| +
Output3

Fig. 5 Convolutional encoder 1/3 rate.

V. PROPOSED THE SIN DECODER

The transmitted signal with AWGN is reassigned to be
an input of the SIN decoder with the sliding window in
Fig. 3. The neural network processes the received code
word sequentially as shown in Fig. 6, obtaining the input
bit associated with the code word. Then, the sliding
window is shifted by 2 bits position, including next two
bits and discarding the previous two bits and then the
next code word is processed. If input data passed
through Fig. 5, the sliding window would be shifted by 3
bits position, including next three bits and discarding the
previous three bits.

< k |
3 I
. Input
! ! | | | | | | | L >
T 1 | | | | | T 1 "
1 2 3 4 5 6 71 8 .. n
Fig. 6 Sliding windows for 1/2 rate.
k »
3 !
' Input
| | | | | I | | | | | I
| I |] [! [f T I —
6 1 2 3 4 5 6 7 8 9 ... n
Fig. 7 Sliding windows for 1/3 rate.

In this manner, we obtain a new input form, and then
use it as that of the SIN. With the previous example, a
codeword will be composed as follows

0 011 01 1
110101 1
0101 00 0
Input = 0 10010 , Target = !
001000 0
1 00010 1
001011 0
1 01100 0

Figure 8 shows how to divide inputs with lines which are
weights and biases. After transformed by (3.6), the new
input will be,

010001 1
111001 |
1 00110 0
1 00100 1
Input = , Target =
01 0010 0
I 101 00 1
01 0011 0
0 01 110 0

In Fig. 9, transformed inputs for 1/2 rate are divided
by a single line, whereas in Fig. 8 three lines are required
to divide original inputs. In the same manner, the other
transformed inputs for 1/3 rate are also divided by a
single line like Fig. 11, whereas in Fig. 10 five lines are
required to do so. It means fewer iterations needed to get
desired convergence.

0G0 001 011 160 161 110 11

Fig. 8 Decision boundaries with multilayer perceptron
for 1/2 rate.

Fig. 9 Decision boundary with the SIN for 1/2 rate.

International Journal of KIMICS, Vol. 1, No. 4, December 2003

181

g : /
/ I
¢ Fo

Fig. 10 Decision boundaries with multilayer perceptron
for 1/3 rate.

o

Fig. 11 Decision boundary with the SIN for 1/3 rate.

0

The SIN decoder for 1/2 rate has better bit error rate
and speed than Viterbi soft algorithm as shown in Fig. 10,
but for the decoder for 1/3 rate the latter is better than the
former for signal over SNR 4 in Fig. 13.

10 —
—o— \fiterbi
...... —_ S|N
10"k
b e
.
107 B
% ~
10° :
" —
101 2 3 4 5 6 7
SNR(dB)

Fig. 13 The result of the SIN & Viterbi decoder for 1/3 rate.

V1. CONCLUSION

This work has proposed the SIN decoder for the receiver
of digital communication systems whose signaling
scheme can be characterized as a finite set of signal
elements. It has been noticed that for low signal-to-noise
ratio the results for the SIN decoder are the best among
ones for the associated Viterbi processor and similar for
higher signal-to-noise ratio. However, it must be emphasized
that the decoding delay inherent to Viterbi processors do
not present in the SIN decoder. We have shown how the
SIN based convolutional decoders can be derived. The
example was rate L=3 code. It has been demonstrated by
simulations that the SIN decoder works well. Because the
SIN itself is very simple, it seems possible to implement
it on a fast chip. When circuit technology evolves, the
faster chips can be built and this may make the proposed
the SIN decoder an interesting choice.

REFERENCES

[1] J.G. Proakis, Digital Communications(McGraw- Hill
Book, 2nd Edition, 1989).

[2] X. Wang and B. Wicker, “An artificial neural net
viterbi decoder”, IEEE trans. communications, vol.
44, no. 2, 1996.

[3] A. C. Huang and Y. F. Chiang, “Function approxi-
mation using serial input neuron”, Neurocompuing,
vol.47, pp. 85-101, 2002.

10 + : . T
: . : : .1« Viterbi soft
;- SIN
107} el :
T
w107} “
- NN
10-3 R SN H Mot
o 7T N
L .
. e
10'4 Lo L [I SR]
1 2 5 6 7 8
SNR(dB)

Fig. 12 The result of the SIN & Viterbi decoder for 1/2 rate.

(4]

(5]

A. C. Huang, “SIN-based model reference adaptive
control of a class of nonlinear systems”, Proc. 6th
Int, Conf. on Automation Technology, vol. 2, pp.
657-662, May 2000.

J. L. Elman, “Finding structure in time”, Cognitive
Science, vol. 14, pp. 179-211, 1990.

182 Hee-Tae Chung, Kyung-Hun Kim : A implementation of Simple Convolution Decoder Using a Temporal Neural Networks

[6] W. Rudin, Principes of Mathematical Analysis(3rd
Edition, McGraw-Hill Book, New York, 1976).

[71 M.T. Hagan, H.B. Demuth and M. Beale, Neural
Network Design(PWS publishing, Boston, MA, 1996).

[8] D.W. Patterson, Artificial Neural Networks : Theory
and Applications(Prentice Hall, Englewood Cliffs,
NJ, 1996).

[9] G. D. Forney, Jr., “The Viterbi algorithm”, Proc.
IEEE, vol. 61(3), pp. 268-278, Mar. 1973.

[10] G. Marcone and E. Zincolini, “An efficient neural
decoder for convolutional codes”, European Trans.
Tele communication., vol. 6(4), pp. 439-445, July-
Aug. 1995.

[11] A. Hamaildinen and J. Henriksson, “Convolutional
decoding using recurrent neural network”, Proc. Int.
Joint Conf. on Neural Networks, July 1999.

[12] A. Haméldinen and J. Henriksson, “A recurrent neural
decoder for convolutional codes”, Proceedings of
1999 [EEE Int. Conf. on Communications, pp.
1305-1309, June 1999.

[13] A. Hamaldinen and J. Henriksson, “Novel use of
channel information in a neural convolutional
decoder”, Proc. Int. Joint Conf. on Neural networks,
pp- 337-342 vol.5, 2000.

Hee-Tae Chung
Received the B.S., M.S., and Ph. D.
degrees electronic engineering from
the Kyungpook National University,
Taegu, Korea, in 1986, 1988, and
1996, respectively. Between 1996
and 1997, he worked as a Patent
Examiner at the Korean Industrial
Property Office. Currently, he is an Associate Professor
at the Divension of Digital Information Engineering,
Pusan University of Foreign Studies, Pusan, Korea since
1997.

His current research interests include the application
of intelligent control to robot systems, remote control
based on Web, adaptive control and neural networks.

Kyung-Hun Kim

Obtained his Master degree in Electrical Engineering
from the Kyoungpook National University, Daegu, Korea
in 2003. He is currently studying for doctor course at
Pusan University of Foreign Studies.

