• Title/Summary/Keyword: network threat detection

Search Result 128, Processing Time 0.028 seconds

Design of Intrusion Detection and Audit Trail System using Network Events (전산망 사건을 이용한 침입 감지 및 감사 추적 시스템 설계)

  • Kim, Ki-Jung;Yun, Sang-Hun;Lee, Yong-Jun;Ryu, Keun-Ho
    • The Transactions of the Korea Information Processing Society
    • /
    • v.4 no.9
    • /
    • pp.2342-2353
    • /
    • 1997
  • According to the outstanding development of information industry, a study of firewall is progressing as one of methods to cope with threat and loss of the data through computer network. For the secure network, this paper proposes the method diminishing threat and loss of the network using the correlation firewall with network audit trail system. Also, this paper suggests not only the audit analyzer execution model but also the type of databases used in audit analyzer to analyze the audit data. Network audit trail system has the function of identifing and analyzing of all intruder actions using audit records created by users.

  • PDF

Intrusion Detection System for Home Windows based Computers

  • Zuzcak, Matej;Sochor, Tomas;Zenka, Milan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.9
    • /
    • pp.4706-4726
    • /
    • 2019
  • The paper is devoted to the detailed description of the distributed system for gathering data from Windows-based workstations and servers. The research presented in the beginning demonstrates that neither a solution for gathering data on attacks against Windows based PCs is available at present nor other security tools and supplementary programs can be combined in order to achieve the required attack data gathering from Windows computers. The design of the newly proposed system named Colander is presented, too. It is based on a client-server architecture while taking much inspiration from previous attempts for designing systems with similar purpose, as well as from IDS systems like Snort. Colander emphasizes its ease of use and minimum demand for system resources. Although the resource usage is usually low, it still requires further optimization, as is noted in the performance testing. Colander's ability to detect threats has been tested by real malware, and it has undergone a pilot field application. Future prospects and development are also proposed.

A Probe Prevention Model for Detection of Denial of Service Attack on TCP Protocol (TCP 프로토콜을 사용하는 서비스거부공격 탐지를 위한 침입시도 방지 모델)

  • Lee, Se-Yul;Kim, Yong-Soo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.13 no.4
    • /
    • pp.491-498
    • /
    • 2003
  • The advanced computer network technology enables connectivity of computers through an open network environment. There has been growing numbers of security threat to the networks. Therefore, it requires intrusion detection and prevention technologies. In this paper, we propose a network based intrusion detection model using FCM(Fuzzy Cognitive Maps) that can detect intrusion by the DoS attack detection method adopting the packet analyses. A DoS attack appears in the form of the Probe and Syn Flooding attack which is a typical example. The SPuF(Syn flooding Preventer using Fussy cognitive maps) model captures and analyzes the packet informations to detect Syn flooding attack. Using the result of analysis of decision module, which utilized FCM, the decision module measures the degree of danger of the DoS and trains the response module to deal with attacks. For the performance comparison, the "KDD′99 Competition Data Set" made by MIT Lincoln Labs was used. The result of simulating the "KDD′99 Competition Data Set" in the SPuF model shows that the probe detection rates were over 97 percentages.

A Study on the Real-time Cyber Attack Intrusion Detection Method (실시간 사이버 공격 침해사고 탐지방법에 관한 연구)

  • Choi, Jae-Hyun;Lee, Hoo-Jin
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.7
    • /
    • pp.55-62
    • /
    • 2018
  • Recently, as the threat of cyber crime increases, the importance of security control to cope with cyber attacks on the information systems in the first place such as real-time detection is increasing. In the name of security control center, cyber terror response center and infringement response center, institutional control personnel are making efforts to prevent cyber attacks. Especially, we are detecting infringement accident by using network security equipment or utilizing control system, but it's not enough to prevent infringement accident by just controlling based on device-driven simple patterns. Therefore, the security control system is continuously being upgraded, and the development and research on the detection method are being actively carried out by the prevention activity against the threat of infringement. In this paper, we have defined the method of detecting infringement of major component module in order to improve the problem of existing infringement detection method. Through the performance tests for each module, we propose measures for effective security control and study effective infringement threat detection method by upgrading the control system using Security Information Event Management (SIEM).

Role of Machine Learning in Intrusion Detection System: A Systematic Review

  • Alhasani, Areej;Al omrani, Faten;Alzahrani, Taghreed;alFahhad, Rehab;Alotaibi, Mohamed
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.3
    • /
    • pp.155-162
    • /
    • 2022
  • Over the last 10 years, there has been rapid growth in the use of Machine Learning (ML) techniques to automate the process of intrusion threat detection at a scale never imagined before. This has prompted researchers, software engineers, and network specialists to rethink the applications of machine ML techniques particularly in the area of cybersecurity. As a result there exists numerous research documentations on the use ML techniques to detect and block cyber-attacks. This article is a systematic review involving the identification of published scholarly articles as found on IEEE Explore and Scopus databases. The articles exclusively related to the use of machine learning in Intrusion Detection Systems (IDS). Methods, concepts, results, and conclusions as found in the texts are analyzed. A description on the process taken in the identification of the research articles included: First, an introduction to the topic which is followed by a methodology section. A table is used to list identified research articles in the form of title, authors, methodology, and key findings.

A Deep Learning Approach for Intrusion Detection

  • Roua Dhahbi;Farah Jemili
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.10
    • /
    • pp.89-96
    • /
    • 2023
  • Intrusion detection has been widely studied in both industry and academia, but cybersecurity analysts always want more accuracy and global threat analysis to secure their systems in cyberspace. Big data represent the great challenge of intrusion detection systems, making it hard to monitor and analyze this large volume of data using traditional techniques. Recently, deep learning has been emerged as a new approach which enables the use of Big Data with a low training time and high accuracy rate. In this paper, we propose an approach of an IDS based on cloud computing and the integration of big data and deep learning techniques to detect different attacks as early as possible. To demonstrate the efficacy of this system, we implement the proposed system within Microsoft Azure Cloud, as it provides both processing power and storage capabilities, using a convolutional neural network (CNN-IDS) with the distributed computing environment Apache Spark, integrated with Keras Deep Learning Library. We study the performance of the model in two categories of classification (binary and multiclass) using CSE-CIC-IDS2018 dataset. Our system showed a great performance due to the integration of deep learning technique and Apache Spark engine.

Research on Security Detection Policy Model in the SIEM for Ship (선박용 Security Information Event Management (SIEM) 개발을 위한 보안 정책 모델에 관한 연구)

  • Gumjun Son;Jongwoo Ahn;Changsik Lee;Namseon Kang;Sungrok Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.61 no.4
    • /
    • pp.278-288
    • /
    • 2024
  • According to International Association of Classification Societies (IACS) Unified Requirement (UR) E26, ships contracted for construction after July 1, 2024 should be designed, constructed, commissioned and operated taking into account of cyber security. In particular, ship network monitoring tools should be installed in accordance with requirement 4.3.1 in IACS UR E26. In this paper, we propose a Security Information and Event Management (SIEM) security policy model for ships as an effective threat detection method by analyzing the cyber security regulations and ship network status in the maritime domain. For this purpose, we derived the items managed in the SIEM from the maritime cyber security regulations such as those of International Maritime Organization (IMO) and IACS, and defined 14 detection policies considering the status of the ship network. We also presents the detection policy for non-expert crews to understand it, and occurrence conditions depending on the ship's network environment to minimize indiscriminate alarms. We expect that the results of this study will help improve the efficiency of ship SIEM to be installed in the future.

A Comparative Study of Machine Learning Algorithms Using LID-DS DataSet (LID-DS 데이터 세트를 사용한 기계학습 알고리즘 비교 연구)

  • Park, DaeKyeong;Ryu, KyungJoon;Shin, DongIl;Shin, DongKyoo;Park, JeongChan;Kim, JinGoog
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.10 no.3
    • /
    • pp.91-98
    • /
    • 2021
  • Today's information and communication technology is rapidly developing, the security of IT infrastructure is becoming more important, and at the same time, cyber attacks of various forms are becoming more advanced and sophisticated like intelligent persistent attacks (Advanced Persistent Threat). Early defense or prediction of increasingly sophisticated cyber attacks is extremely important, and in many cases, the analysis of network-based intrusion detection systems (NIDS) related data alone cannot prevent rapidly changing cyber attacks. Therefore, we are currently using data generated by intrusion detection systems to protect against cyber attacks described above through Host-based Intrusion Detection System (HIDS) data analysis. In this paper, we conducted a comparative study on machine learning algorithms using LID-DS (Leipzig Intrusion Detection-Data Set) host-based intrusion detection data including thread information, metadata, and buffer data missing from previously used data sets. The algorithms used were Decision Tree, Naive Bayes, MLP (Multi-Layer Perceptron), Logistic Regression, LSTM (Long Short-Term Memory model), and RNN (Recurrent Neural Network). Accuracy, accuracy, recall, F1-Score indicators and error rates were measured for evaluation. As a result, the LSTM algorithm had the highest accuracy.

Classification of HTTP Automated Software Communication Behavior Using a NoSQL Database

  • Tran, Manh Cong;Nakamura, Yasuhiro
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.5 no.2
    • /
    • pp.94-99
    • /
    • 2016
  • Application layer attacks have for years posed an ever-serious threat to network security, since they always come after a technically legitimate connection has been established. In recent years, cyber criminals have turned to fully exploiting the web as a medium of communication to launch a variety of forbidden or illicit activities by spreading malicious automated software (auto-ware) such as adware, spyware, or bots. When this malicious auto-ware infects a network, it will act like a robot, mimic normal behavior of web access, and bypass the network firewall or intrusion detection system. Besides that, in a private and large network, with huge Hypertext Transfer Protocol (HTTP) traffic generated each day, communication behavior identification and classification of auto-ware is a challenge. In this paper, based on a previous study, analysis of auto-ware communication behavior, and with the addition of new features, a method for classification of HTTP auto-ware communication is proposed. For that, a Not Only Structured Query Language (NoSQL) database is applied to handle large volumes of unstructured HTTP requests captured every day. The method is tested with real HTTP traffic data collected through a proxy server of a private network, providing good results in the classification and detection of suspicious auto-ware web access.

Detecting Insider Threat Based on Machine Learning: Anomaly Detection Using RNN Autoencoder (기계학습 기반 내부자위협 탐지기술: RNN Autoencoder를 이용한 비정상행위 탐지)

  • Ha, Dong-wook;Kang, Ki-tae;Ryu, Yeonseung
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.27 no.4
    • /
    • pp.763-773
    • /
    • 2017
  • In recent years, personal information leakage and technology leakage accidents are frequently occurring. According to the survey, the most important part of this spill is the 'insider' within the organization, and the leakage of technology by insiders is considered to be an increasingly important issue because it causes huge damage to the organization. In this paper, we try to learn the normal behavior of employees using machine learning to prevent insider threats, and to investigate how to detect abnormal behavior. Experiments on the detection of abnormal behavior by implementing an Autoencoder composed of Recurrent Neural Network suitable for learning time series data among the neural network models were conducted and the validity of this method was verified.