
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 9, Sep. 2019 4706
Copyright ⓒ 2019 KSII

Intrusion Detection System for Home
Windows based Computers

Matej Zuzčák

1*
, Tomáš Sochor

1
, and Milan Zenka

1
1 Department of Informatics and Computers, Faculty of Science University of Ostrava,

Ostrava 70103, Czech Republic.
[e-mail:{matej.zuzcak, tomas.sochor, milan.zenka}@osu.cz]

*Corresponding author: Matej Zuzcak

Received September 9, 2018; revised December 24, 2018; accepted January 17, 2019;
published September 30, 2019

Abstract

The paper is devoted to the detailed description of the distributed system for gathering data
from Windows-based workstations and servers. The research presented in the beginning
demonstrates that neither a solution for gathering data on attacks against Windows based
PCs is available at present nor other security tools and supplementary programs can be
combined in order to achieve the required attack data gathering from Windows computers.
The design of the newly proposed system named Colander is presented, too. It is based on a
client-server architecture while taking much inspiration from previous attempts for designing
systems with similar purpose, as well as from IDS systems like Snort. Colander emphasizes
its ease of use and minimum demand for system resources. Although the resource usage is
usually low, it still requires further optimization, as is noted in the performance testing.
Colander’s ability to detect threats has been tested by real malware, and it has undergone a
pilot field application. Future prospects and development are also proposed.

Keywords: Network intrusion detection system, IDS, packet, threat, threat analysis,
signature.

http://doi.org/10.3837/tiis.2019.09.021 ISSN : 1976-7277

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 9, September 2019 4707

1. Introduction

At present, a host of security threats come from the Internet (e.g. in 2016, about 357 million
new malware variants emerged according to [1]. The threats are classified according to their
dissemination vector, and/or according to aimed targets (victims). For instance, there are web
threats (distributed from web pages to any visitor), network attacks targeting to corporate
infrastructure (e.g. servers), or malware targeting the client computers or mobile devices via
their users. The occurrence and/or dissemination of network threats, primarily worms, can be
efficiently monitored using honeypots. Similarly, even web-based attacks can be monitored
by means of the application of a web application firewall (WAF) technology and/or via
specific web-based honeypots. The most complicated situation occurs when a researcher
needs to learn about threats attacking end-stations (e.g. PC workstations, laptops). Usually,
companies providing security software have information on such threats, but it is not
publicly available, or such information is published with a delay. Therefore, researchers have
to find other sources of information and options to get the data from end-stations.
This paper describes a new project in this field called Colander. This is a newly developed
tool for collecting data from ordinary end users (and namely their computers, including
workstations and laptops). The gathered data is selected according to predefined rule sets.
The rules are designed so that only data suspicious data in the user’s network
communications is gathered. Such suspicious data are often caused by malware or other
more targeted cybernetic attacks.
There are many techniques and tools detecting many types of threats (i.e. various types of
malware) attacking computers from the Internet and LANs. The long-term proven tools
include antivirus and antimalware software. However, such software is beyond the scope of
this research. This is primarily because of the fact that antivirus (and similar software) main
focus is protection against malicious code. On the contrary, this research does not focus on
any type of protection against threats. The objective of the research was just to analyse
techniques for threat detection. Therefore, only tools for sole collecting data about detected
threats (not including any preventive measures) are reviewed here. However, firewalls could
seem to present an exception from this limitation. Nevertheless, only detecting abilities of
firewalls are reviewed in this paper.

2. Network Threat Monitoring Fundamentals

There are various approaches to the detection of network threats. This task is complex
because the threat “landscape” varies and evolves. Threats can be detected passively via
monitoring of incoming threats. This is a prevalent approach (as confirmed e.g. in [2]) in
most systems for both detection and prevention against various threats (e.g. antivirus
software, antimalware etc.). Passive threat-detecting systems usually employ certain self-
adaptability (e.g [3]). Recently, together with the quickly growing market of Internet of
Things (IoT), new industrial systems connected to the Internet emerge that must be protected
as well. This presents a new part of “threat surface” (covered in reviews [4] or [5]). In
addition, there are many single-purpose software tools performing certain collection (direct
or indirect) of data about threats and/or attacks coming through connection. However, the
data collection is often not the primary purpose thereof. Such tools include firewalls,
IDS/IPS, as well as other security projects. The potential of open-source tools for the

4708 Zuzčák et al.: Intrusion Detection System for
Home Windows based Computers

endpoint attack detection in the context of Windows-based workstations is analysed in the
following sections.

2.1 Firewalls

Software firewall are classified into client device firewalls (personal firewalls), server
firewalls, and network firewalls (independent appliances combining software and hardware
protecting the whole network or its segment). Various commercial products prevail among
personal firewalls, frequently combining various security features (like antivirus) into single
software. Personal firewalls often gather data on detected threats that are subsequently
processed in producer’s private cloud [6] and recently even SDN concept is applied [7]. The
users can usually decide either to allow or deny the firewall cloud extensions. When allowed,
the firewall improves the promptness of the response to new threats.
Many server firewalls are based on iptables as proven packet filtering software. Iptables can
also collect logs about selected network traffic; the logs can be easily shared in a specific
community. For instance, data on connections targeted to port 22 (SSH protocol used for
remote administration of unix systems) is often logged (see [8]). An example of popular
tools using iptables is Fail2BAN (see [9]). Unlike personal and server firewalls running on a
machine to be protected, network firewalls are intended to protect the whole private network
or its segment, from potentially malicious communication (see [10]). Network firewalls are
not subject of a detailed analysis here.

2.2 Intrusion Detection and Prevention Systems

Intrusion Detection Systems (IDS) and Intrusion Prevention Systems (IPS) operation is
based on the network traffic analysis. IDS/IPS principles are described e.g. in [11] where
artificial intelligence application in detection is reviewed thoroughly, while [12] reviewed
available solutions, both commercial and open-source, etc. Open-source IDS/IPS often use
threat detection rules delivered by the product community but commercial supply of rule
updates or the combination also exist. Here, the most frequently used systems are analysed
from the point of view of the techniques of network traffic analysis and possibility for
sharing gathered data about potential threats/attacks. Certain attempts exist to standardize of
IDS events. The most notable is the IETF standardization of Intrusion Detection Message
Exchange Format (IDEMF) in [14] and Intrusion Detection Exchange Protocol (IDXP) in
[10]. These proposals were not implemented in practice, though, because of many open
issues when sharing such sensitive data like attacks against network are to be shared. So far,
sharing of data about attacks is rather uncommon.
IDS can detect threats based on the three following detection approaches:

Signature based detection – IDS has rules identifying threats. A rule identifies a specific
threat based on one or more signatures it contains. A threat can be identified by multiple
rules, since it can be identifiable by various sets of signatures. Rules usually pertain to
individual packets. Typical signatures are a sender IP address, suspicious patterns in packet
payload, ports used for non-standard purposes, or non-standard packet layout (e.g. a header
field beyond standard definitions, or data in fields where it is usually not inserted, or failure
to meet RFCs in general).

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 9, September 2019 4709

Script based detection – scripts written in a language can potentially specify detection
parameters more accurately than signatures. In certain cases (e.g. a DDoS attack) a threat can
only be identified by multiple subsequent packets, necessitating use of scripts.

Anomaly based detection – builds on the analysis of an “ordinary” network traffic and,
subsequently, the IDS looks for patterns of packet behaviour that are unusual in the
“ordinary” traffic. A thorough overview of anomaly-based IDS is presented in [15]. This
approach requires a period when the IDS analyses a common traffic and derives the data for
detection of anomalies (learning period). After this period, however, the IDS can detect even
attacks that have been unknown as of yet (i.e. signatures are not available for them yet like
“zero-day” attacks).

An example of three common intrusion detection systems follows:
Snort1 seems to be the most frequently used open source IDS (about half a million users). It
uses signature based detection as described in [16]. Signatures and rules are created by the
user community with subsequent processing of the project staff. Snort is distributed as
GNUv2-licensed open-source. The main advantage of Snort is its cross-platform nature – it
can be implemented having compiled from source codes as well from binary packages
available both for various Linux distributions and FreeBSD and for Windows as well. There
is an issue with Snort, however, a limited optimisation causing problems with running it
especially on low-capacity devices. This is due to the absence of multithreading support
expected to come in version 3.0, which is now in the alpha testing phase. Rules for
evaluation of the network traffic are essential for Snort operation. Besides the ruleset
provided by Snort itself, there is also a ruleset called Community ruleset (Talos) is freely
available and it is utilised in other systems, too, e.g. Suricata.
Rules are distributed as a text file where every line represents a single rule for a specific
threat. Every rule is comprised of a header and its detection conditions. Each rule has a
single header and can have multiple conditions, e.g. the protocol type, the source and
destination ports, the packet direction (in or out), parts of the payload to match, etc.

Complete Snort rule example:
 # alert tcp $HOME_NET 2589 -> $EXTERNAL_NET any (msg:"MALWARE-
BACKDOOR - Dagger_1.4.0"; flow:to_client,established; content:"2|00 00 00 06 00 00
00|Drives|24 00|"; depth:16; metadata:ruleset community; classtype:misc-activity; sid:105;
rev:14;)

New rules are created primarily by the community and shared dynamically. In addition,
every user can create their own rules for their purposes, and such a rule can be provided to
Snort that can integrate the rule into the community ruleset. The rules and their format are
used by the Colander IDS, as they were the most wide spread and available rule set.
Suricata2 software is backed by Open Information Security Foundation (OISF)3. Its first
beta version was released in 2009 while the first stable release in July 2010. The Suricata
paradigm as well as technical background is similar to Snort. Nevertheless, it brings some
new elements. like numerous extensions, both by the producer and third-party. Suricata is

1 Available at: https://snort.org
2 Available at https://suricata-ids.org
3 Details are available at https://oisf.net

https://snort.org/

4710 Zuzčák et al.: Intrusion Detection System for
Home Windows based Computers

focused primarily on Linux-based servers in commercial segment but the support for
FreeBSD and Windows is still available. The snort performance on the latter platforms is
lower, nonetheless (see [17]). The main advantage of Suricata is its high performance and
the ability to analyse the traffic at high speeds in multiple Gbps. This is enabled by
multithreaded architecture and GPU acceleration [17]. Suricata is designed primarily for
high-performance servers with multiple CPUs and massive multithreading as well for a high-
speed communication. It allows variable logging, for instance of HTTP requests, TLS
certificates, or extracting files from TCP traffic flow. More complex types of detection that
are beyond the description in the form of rule syntax are possible using Lua scripting
language. There is another filtering layer allowed thanks to the support for IP address
reputation assessment using public reputation lists listing a huge number of IP addresses and
their reputation evaluations. When the automatic logging or communication rejection from
untrusted IP addresses is applied, lots of computational resources can be saved.
Suricata makes use of two main sources for detection rules, Talos/Snort ruleset4 with the
rules described in the section Snort (2.3.1) above, and Emerging Threats5, which are similar
to Talos community rules, except for the fact that from a different community called
Emerging Threats.
This necessarily means that duplicate rules emerge when both rulesets are used.

Bro system was originally designed by Vern Paxson6 who has been steering the project still
in cooperation with researchers and developers at the International Computer Science
Institute in Berkeley and in the National Center for Supercomputing Applications7. Bro
applies a signature-based approach too, but its main emphasis is given to an anomaly-based
detection. Bro was designed as a research tool not intended for the use in a corporate
environment, so its basic approach and architecture is slightly different from the above Snort
and Suricata. The main difference consists in the possible use of alternative cluster
architecture called Bro Cluster8. It supports Linux, FreeBSD and MacOS, but it does not
support Windows. Bro provides extensive log files containing not only a simple record for
each connection but e.g. all details about each HTTP session with all requested URLs, key
headers, used MIME types, and server responses, and SSL certificates, or the significant
contents of each SMTP connection etc. Fundamentally, Bro represents a platform for the
network traffic analysis where IDS is just one of many functions available. The most
important Bro’s component is its domain-specific scripting language able to express arbitrary
analytic tasks. Thanks to it, Bro can be considered as a “domain-specific Python“. It has a
huge range of functionalities even with its standard library while their extending using own-
made or community libraries is possible. Other Bro capabilities include file extraction
directly from the http session, malware detection using the interface of external registers,
notification about vulnerable software version in the network, identification of frequently
used web applications, SSH brute-force attack detection, and many others. There is an
important option from the implementation point of view consisting in forming so-called Bro
Cluster. This is a means for balancing the load of Bro between multiple nodes (any

4 Available at https://www.snort.org/downloads/#rule-downloads
5 Available at http://doc.emergingthreats.net/bin/view/Main/AllRulesets
6 Details can be found at https://www.bro.org/sphinx/intro/index.html
7 See also http://www.ncsa.illinois.edu
8 Detailed description is available at https://www.bro.org/sphinx/cluster/index.html

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 9, September 2019 4711

computers in the network). It consists of the central manager coordinating and synchronising
processes for any number of workstations that analyse the traffic that passes through them.
Bro is distributed in a form of multiple modules and frameworks that can be used separately
or combined as desired. Among such modules, the following worth noticing: File Analysis,
GeoLocation, Intelligence Framework, Signature Framework, NetControl Framework, and
many others.
Bro uses two types of detection rules when used as IDS. Namely:

- Talos/ Snort ruleset6 - rules described in the section Snort above.
- Scripts of Bro scripting language9 - Bro scripting language has the expressivity

comparable to Python or Pearl, i.e. it can define any conditions for the traffic analysis
that go beyond the description by signature-based rules.

Comparison of analysed network IDS shows that each of the IDS mentioned above takes a
different approach. While Snort’s main focus is to spread among the IT security community
and enthusiasts as much as possible, trying to persuade them by their low resource
requirements and availability for almost any operating system, its community is the largest
one. However, its long history demonstrates, among others, in its outdated technological
basis, primarily in the absence of multithreading and detection of anomalies.
Suricata originated as Snort’s direct competitor offering improved function range, consisting
primarily in the anomaly detection function. Nevertheless, its improved functions
demonstrated in higher hardware and system requirements as well. Together with gradual
widening of available functions, the main focus of the project was changing. At present,
Suricata is primarily focused on high-performance servers with multiple powerful CPUs
containing many cores.
Bro was designed from its very origin as a research platform. The most significant difference
from Sort and Suricata consists in the fact that it can be implemented in a LAN as a whole
where individual nodes communicate and cooperate. Regarding its high complexity, Bro is
more suitable for corporations rather for enthusiasts. The Table 1 summarises the main
aspects of Snort, Suricata and Bro.

Table 1. Comparison of main aspects of analysed IDS systems.

Parameter Snort Suricata Bro
Signature rules Snort/Talos Snort/Talos and

Emerging Threats
Bro signature language

Anomaly detection No Yes, by Lua scripting
language

Yes, by Bro scripting
language

Multithreading No Yes Yes
Installation Manual Package based or

manual
Package based, manual
for extensions

Documentation Expansive online
manual on the project
web pages, extensive
community support

Fledgling online
manual, relatively
small community,
limited Lua
documentation

Expansive online
manual, detailed
installation manual

IPv6 support Supported after
installing the IPv6
module

Fully supported Fully supported

9 For details see https://www.bro.org/sphinx/scripting/

4712 Zuzčák et al.: Intrusion Detection System for
Home Windows based Computers

Operating systems Linux, FreeBSD, Mac
OS, Windows

Linux, FreeBSD, Mac
OS, limited Windows

Linux, FreeBSD, Mac
OS

Scripting language No Lua scripting language Bro scripting language

Target hardware Servers, common
workstations, network
nodes

High end servers Servers, common
workstations, network
nodes, has variable
workload

Last stable release 2.9.11.1, released on
04.01.2018

3.2.2, released on
07.06.2017

2.5.4, released on
30.05.2018

The above software tools have the main aim in protecting a specific workstation or a server.
However, the presented Colander project primarily demands a tool that is able to detect the
network traffic passively while informing the central point about potential threats and the
user’s hassle is as little as possible. This is not the case of these IDS systems. The reason
why their analysis is presented here is that certain parts of their functions, namely Snort’s
signature detection, is required for our project.

2.3 Similar threat data gathering projects

The following projects with similar goals to Colander provided inspiration for its inception,
as they both collect data from home PCs. There are various other solutions that provided
additional inspiration, such as the specialized rule-based multiagent IDS described in [19] or
the botnet netflow-based detector based on machine learning pattern identification
demonstrated in [20], but their impact on our system is quite limited.
Turris project10 was established by the association CZ-NIC. The project is devoted to the
design, production and improvement of special home-network edge-routers for networks
with advanced capabilities related to the collection of traffic data aimed at subsequent
improvement of the security level of the network where the router operates. The main
difference between Turris and an ordinary IDS lies in the fact that Turris analyses only
packet headers while the packet payload, the data, is intentionally ignored in order to
protect user privacy. Turris router operates as an ordinary integrated home router. If a
potential threat is identified, the record is sent to the project server where it is assessed and
compared to other similar threats. If it is confirmed that an attack is detected, a preventive
measure protecting against it will be incorporated in a subsequent update, thus protecting all
the users.
European Network of Affined Honeypots (NoAH) [18] is an already discontinued
project11, but it served as an inspiration for Colander. The project’s main aims were
collecting and analysing attacks from the Internet and forming an infrastructure for
collecting the captured data from such attacks and storing it to be used in further research by
CSIRT and CERT teams.
Honey@home represents a client implementation of NOAH for ordinary home PCs. It
operated by emulating services on network ports not being used by the any other program on
the PC. Any traffic through these ports was forwarded to project’s servers for further
analysis. No selection or analysis was performed on the home PCs.

10 Details about the project are available at https://www.turris.cz/en/
11 Details about the project are available at https://www.fp6-noah.org and http://www.honeyathome.org

https://www.fp6-noah.org/

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 9, September 2019 4713

Distributed intrusion detection with intelligent network interfaces for future networks
[26], a paper that outlines an idea and presents the results of a prototype distributed IDS
system. The presented IDS is layered, with the first layer conducting preprocessing of
network traffic on network nodes, such as routers, and redirecting it to one of several servers
running second layer of the IDS based on the results of the preprocessing. Every server of
the second layer is running the IDS with a different set of rules smaller than the overall set
used by all servers together. This is done so that the redirected traffic is only checked against
relevant rules, saving computing time. In contrast, Colander is meant for user PCs, not
servers, only operates at the end points of networks, and uses small set of relevant rules.

3. Problem formulation

The above analysis demonstrates that certain projects partially meet the objectives set up for
Colander but none fulfil them completely. Therefore, a decision was made to apply certain
approaches (e.g. rule sets) from them but to develop completely new tool to meet all the
requirements. The most similar tool is Honey©home client by NoAH. The similarity lies
mainly in it being a software solution for collecting data about threats from home PCs, and in
splitting into functional-analogous client part for data gathering and analytical server part
functions. Honey©home, however, can only gather data about communication on ports not
commonly used by the given PC, while Colander’s goal is to analyse all of the network
communication, regardless of the port used. Lastly, Honey©home does not analyse the
communication on the client, while Colander does.
Attacks against client computers are the object of interest of the Turris project. It analyses
the communication on the client side, as Colander does, but it only analyses the packet
headers. Turris is a separate appliance serving as a router, not just software.
Among the IDS mentioned above, Snort was the main inspiration for this project, from the
point of view of functionality. Due to the absence of any specific focus, it provides rules
with the widest possible scope that are much more useful for Colander project comparing to
Emerging Threats rules having their specific focus niches.
Based on the analysisit was decided to use modified Talos/Snort rules in Colander.Also, the
Suricata’s focus to maximise the utilisation of the highest possible number of cores was the
motivation for the maximum possible application of multithreading due to the modern
proliferation of multi-core processors even in low-end computers. There was another
inspiring aspect in Honey©home where it was demonstrated that a properly designed graphic
user interface could increase the users‘ motivation towards using of such a tool. Therefore,
Colander is equipped with a basic graphic interface as well.

3.1 Colander Project Philosophy

Based on the analysis, a conclusion was made that virtually all existing (alive and
discontinued) research NIDS tools and projects aimed at analysing network threats are
oriented to run on networked nodes, servers, or even personal computers of enthusiasts
having certain entry level of knowledge. On the other hand, there are commercial firewalls
and antivirus/antimalware software not requiring much knowledge to operate but they do not
publish their data, or they are late, or incomplete. Due to this fact, their research results (even
if it is performed by commercial producers) are not applicable in academic research.

4714 Zuzčák et al.: Intrusion Detection System for
Home Windows based Computers

Therefore, there is a “blind spot“ in the field of cyberattack research in a missing collection
of data required for subsequent research. This is primarily represented by residential (home)
networks where the majority of ordinary users run Windows. Despite the Turris project
mentioned above focuses on attack data collection from home networks, this solution does
not aim at users‘ computers and their systems.
In general, there could be two main reasons why this “blind spot“ has not been filled yet. The
first is a lack of users’ motivation. Why a user should do something that will not bring any
immediate benefit to them? A contribution to research is a vague and non-motivation idea.
Also, the inprovement of the user’s own IT security does not work either because of low
awareness on IT risks among users. Another reason lies in demands on users. Standard IDSs
are not designed for the use by ordinary users and their operation is beyond the capabilities
of such users,. Moreover, common IDSs usually require certain configuration (e.g. selection
of rules) that affect the IDS operation significantly. And the collected data should be
analysed or at least shared with the community, which could be another obstacle for an
unqualified user. Data merely accumulated and not shared with experts for analysis is useless.
In order to attract ordinary users to use Colander, both of the above-mentioned issues were
addressed properly. Therefore Colander tries to provide a maximum ease of use and
demands on the user were reduced as much as possible. The only thing that the user have to
do is to run the installer with appropriate privileges and let the installation complete. Then
they can forget about the program forever. In case the users are interested in controlling the
program, a simple and easy to use graphic user interface is available where they can control
the program slightly, and statistics are displayed. It is expected nevertheless that for most
users, this program is just represented by a new, never used icon in the hidden icons bar.
The motivation of a potential user seems to be a much more difficult issue. As mentioned
above, no immediate incentive means no motivation in most cases. Therefore, for now, the
dissemination is mainly among people with a relation to the authors, for whom the
motivation consists of helping the IT security improvement.

4. Technical Design

Several issues had to be addressed in the Colander program design. Among them, the lowest
achievable demands both for users and system resources were the most important. Other
issues included the method of communication of the client with the central server, and
mainly detection of potential threats identified in the network traffic destined to the client.

 4.1 Colander Architecture

Colander is built on the client-server architecture where the data collection is performed on the client
and the server part’s main task is to store the captured data and control client’s behaviour.
The Colander architecture is shown in Fig. 1.
Client side. Regarding the client target platform that is Windows, .NET framework seemed
to be an obvious choice for programming the client’s code, where C# language was chosen.
Due to the fact that C# language is supported in Microsoft .NET as a primary language for
application programming for Windows, it provides virtually all required tools including
Windows service programming and configuration as well as GUI design. More
specifically, .NET version 4.0 was chosen, which allows the code to be executed on any

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 9, September 2019 4715

version of Windows Vista and newer without the need for installing .NET framework
updates in case of Windows 8 and 10. The packet capturing is performed using a well-known
and proven solution WinPcap12.

Fig. 1. Colander system architecture.

WinPcap serves as an interface between Windows API providing a low-level access to
network interfaces. It consists of a driver that broadens the OS’s functions in providing the
low-level access to the network adapter, and a library allowing to access and control the
driver. In order to make the operation of WinPcap more efficient, .NET wrapper for
WinPcap designed for C# - Pcap.Net13 was used. It allows direct calling of most WinPcap
functions from C# language. The Colander client program is installed as a Windows service.
A GUI is included in the distributed package serving for the client control.
Server side. The server side is intended for storing the captured threats and their analysis. It
was developed for Linux OS (Debian distribution is preferred). The Linux-based solution
was chosen compared to a Windows-based server side because of Linux’s significantly
lower hardware requirements resulting in lower cost. The server side’s main task is to wait
for connection from clients and after being connected to store their captured packets to a
MySQL database. Those packets were captured on a client because it evaluated the data as
containing a potential threat. An integral part of the server side is the Apache server
providing a hosting service for web pages designed in the Flask Python framework
Model of the database. The database contains only two tables as they are shown in Fig. 2.
The Packet table was designed to store captured suspicious packets. The attributes are rather

12 Available at https://www.winpcap.org
13 Available at https://github.com/PcapDotNet/Pcap.Net

https://github.com/PcapDotNet/Pcap.Net

4716 Zuzčák et al.: Intrusion Detection System for
Home Windows based Computers

self explanatory.

Fig. 2. Database Model Diagram.

The other table called Network_adapter serves for a unique identification of network
adapters that are involved in the packet capture. The Colander client allows capturing from
multiple network adapters, e.g. a laptop can be connected to the Internet via Ethernet cabling
at home and through Wi-fi otherwise. The table contains a SHA-1 hashed MAC address of
the interface in Network_adapter_mac_hash_id attribute. It serves as a primary key making
use of the uniqueness of MAC addresses. The table contains a single record for each single
network adapter. The table contains the IP address assigned to the interface but its storing is
subject to the user consent and the program can operate without the local IP address storing.
 Rules for detection of potential threats in traffic. As mentioned above, Colander makes
use Talos/Snort rules for signature based detection. Before applying, the rules are modified,
mainly by removing rules not intended for Windows, such as Linux specific rules. Also rules
dealing with specific types of threats that are unlikely to be encountered on a home PC are
removed, for example DDoS attack rules.
However, the modularity of the system will allow ruleset modification in the future (based
on an analyst decision), consisting either in adding new rules, or in removing the rules that
are no longer considered necessary. Following are some of the most common options of the
Talos/Snort rules for illustration:

Action: alert – "alert" is the keyword of the most common action, meaning that this rule
generates a notification. Only rules with this action are being used, although they are already
a vast majority.

Protocols – protocols, such as TCP, UDP, or ICMP.
Port numbers – source and destination ports used for UDP and TCP protocols.
Direction – direction of communication is often a key characteristic in assessing threats.
Msg – threat name used for identification.
Content – the packet payload that indicates the threat. A single rule can contain multiple

"content" elements.
Pcre – regular expression for matching the contents of the payload. A single rule can

contain multiple "pcre" elements.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 9, September 2019 4717

User interface. Having the Colander client program installed, no user interaction is required
for the service to become operational. The service is designed specifically so that the user
can install it and forget about it. GUI, as shown in Fig. 3 serves just as an added value for
such users who are interested in having more details. Its use is purely optional.

Fig. 3. Colander – Basic statistics.

4.2 Colander internal design

Colander service and GUI were coded using Microsoft Visual Studio 2017. The source code
was written in C# language. The serve side was coded in Python 3 language using the
development tool JetBrains Pycharm and web framework Flask.
After being started, the Colander service runs a short 2 minute test on all available network
interfaces to determine which ones are active. When that is determined, it starts its scanning
cycle on active interfaces. The scanning cycle is composed of 10 minutes of scanning the
traffic on the given interface, after which it stops to release the RAM it was using and to
send the captured threats to the server, after which the cycle restarts. In multi-threaded
version, a thread is created for each available core, and each thread is assigned a packed for
analysis as they are received.

5. System Testing and Results

The program has been tested from the point of view of its performance, i.e. the ability to
capture several threats represented by a real malware code that was executed in a laboratory
environment with subsequent spreading of the malicious code among other users. From
approx. 10 malware specimens, only three were active as detailed in Section 5.2.

4718 Zuzčák et al.: Intrusion Detection System for
Home Windows based Computers

 5.1 Performance benchmark testing of the Colander service

Regarding the fact that the Colander client runs on common client computers (e.g.
workstations or laptops), the minimisation of system resource demands was one of the
primary goals as stated above. Otherwise, a significant slowing down of the system could
results in lower user motivation to keep running the client program.
Tests were focused on the CPU Load expressed as a percentage of the total CPU load at the
specific moment. This expresses the CPU load in relation to the other processes. This is
beneficial when measurements from different CPUs are to be compared whent he absolute
metric could be difficult to compare. This means that when the total CPU load in a specific
moment was e.g. 30% and the the load of Colander was 5%, the load of Colander was 5% of
the 30% of the total CPU potential, which would be 1.5% in this case.
Packet loss, the percentage of packets that passed the specific network interface without
being analysed, is also considered in the tests.
The tests consisted in a TCP stream and UDP flow download at various average transmission
speeds. The tests were performed on three different computers differing in CPUs. The CPUs
in the test were the following:

− Intel Core i5-6400 @ 2.7GHz, 4 cores (denoted “i5”),
− Intel Core i7-26302QM @ 2GHz, 4 cores with Hyper Threading into 8

threads (denoted “i7”), and
− Intel Atom Z520 @ 1.33 GHz, single core (denoted “Atom”).

The transmission speeds used in the tests were 2 Mbps, 3.2 Mbps, 6.4 Mbps and 16 Mbps.
Tests were made using “Windows Performance Recorder“ tool that can record the utilization
of CPU by individual processes. The duration of every single test was 5 minutes.
There is an important difference in resource requirements for processing between TCP and
UDP packets because of a significantly different number of rules. While the number of UDP
rules is just 355, the number of TCP rules exceeds 2500 (2546 in fact). It is obvious that the
higher the number of rules, the longer CPU time is required for single packet evaluation.
Therefore, the number of rules limits the maximum number of packets that can be evaluated
in a specific time.
The following table describe a set of selected representative tests.

Table 2. System testing results
Test Configuration Test result
Test 1: PC was in an idle state
(i.e. only testing download and
common automatic background
processes were running in the
system).

CPU i5, Protocol UDP,
Transmission speed 2 Mbps,
Program version was single-
thread, Average CPU load of all
processes was 20%.

CPU load of 5% average with
no packet loss detected.

Test 2: PC was in an idle state
like the one in the previous test.

CPU i7, Protocol UDP,
Transmission speed 2 Mbps,
Program version was single-
thread, Average CPU load of all
processes was 20%.

CPU load of 5% average with
no packet loss detected, as
expected due to the previous
test.

Test 3: The CPU load was high
in order to demonstrate
Colander’s acceptable CPU
load even under heavy overall
CPU load.

CPU Atom, Protocol UDP,
Transmission speed 2 Mbps,
Program version was single-
thread,
Average CPU load of all
processes was 90%.

Acceptable CPU load at
average of 10% with still no
packet loss even on the slowest
CPU.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 9, September 2019 4719

Test 4: Transmission speed was
heightened compared to the test
No.1.

CPU i5, Protocol UDP,
Transmission speed 3.2 Mbps,
Program version was single-
thread, Average CPU load of all
processes was 20%.

Average CPU load remained at
5% with no packet loss
detected. 5% seems to be the
minimum CPU load for this
configuration regardless of the
transmission speed.

Test 5: Transmission speed was
heightened with normal
background CPU load for the
given CPU.

CPU Atom, Protocol UDP,
Transmission speed 3.2 Mbps,
Program version was single-
thread, Average CPU load of all
processes was 50%.

Average CPU load rose to an
average of 10% with no packet
loss detected, an acceptable and
expected increase.

Test 6: Transmission speed was
doubled from the previous test
in order to go over the
maximum transmission speed at
which this CPU can analyse the
traffic without packet loss.

CPU Atom, Protocol UDP,
Transmission speed 6.4 Mbps,
Program version was single-
thread, Average CPU load of all
processes was 60%.

Average CPU load rose to an
average of 17% with packet
loss of 4%. The maximum UDP
transmission speed of the
Atom-based computer is
approx. 6.16 Mbps.

Test 7: Transmission speed was
much higher in order to
demonstrate the capacity limit
of Colander at the specific
CPU.

CPU Atom, Protocol UDP,
Transmission speed 16 Mbps,
Program version was single-
thread, Average CPU load of all
processes was 60%.

The CPU load held at the
reachable maximum of 17%.
Packet loss increased to 63%.
An example of goin over the
maximum speed of a CPU,
when packets exceeding the
limit are discarded.

Test 8: A comparative test to
the test No.7, with the same
speed but a faster CPU.

CPU i5, Protocol UDP,
Transmission speed 6.4 Mbps,
Program version was single-
thread, Average CPU load of all
processes was 20%

Average CPU load rose to an
average of 6% with no packet
loss detected, showing that the
clock speed of the CPU matters
significantly.

Test 9: A comparative test to
the test No.8, with the same
speed but a higher load to
demonstrate that the efficiency
of Colander is unaffected by the
high overall CPU load.

CPU Intel i5, Protocol UDP,
Transmission speed 6.4 Mbps,
Program version was single-
thread, Average CPU load of all
processes was 70%.

CPU load of Colander relative
to the overall load was 2%,
demonstrating that Colander’s
CPU load is low under heavy
overall load as well as under
light one.

Test 10: Test demonstrating the
difference between tests using
TCP and UDP protocols. It is a
comparison to the test No.8, but
using TCP.

CPU i5, Protocol TCP,
Transmission speed 6.4 Mbps,
Program version was single-
thread, Average CPU load of all
processes was 15%.

There is no difference in CPU
loads at the same speed, but
there is a 12% packet loss. The
maximum speed limit for i5
CPU when capturing TCP,
approx. 3.5 Mbps.

Test 11: The single-thread
service version limit was
demonstrated again at higher
transmission speed.

CPU i5, Protocol TCP,
Transmission speed 16 Mbps,
Program version was single-
thread, Average CPU load of all
processes was 20%.

The single-thread service is
efficient up to a specific packet
transmission speed. After it is
exceeded, a significant packet
loss occurs, in this case even up
to 66%.

Test 12: A test of the single
threaded Atom CPU using the
multi-threaded version of
Colander.

CPU Atom, Protocol UDP,
Transmission speed 6.4 Mbps,
Program version was multi-
thread, Average CPU load of all
processes 90%.

The multi-thread version is
completely inadvisable to be
used on single-thread CPU. The
packet loss was unacceptably
high, a programming issue to be

4720 Zuzčák et al.: Intrusion Detection System for
Home Windows based Computers

 fixed in later versions. The
packet loss was up to 83%.

Test 13: A test demonstrating
the usefulness of the multi-
threaded version of Colander
when used on an appropriate
CPU.

CPU i7, Protocol UDP,
Transmission speed 16 Mbps,
Program version was multi-
thread,
Average CPU load of all
processes 90%.

The CPU i7 with eight threads
is optimal here as the zero
packet loss shows. CPU load of
30% under heavy load is rather
high, but the efficiency is
arguably worth it, and it is
decreasing with further thread
optimisation. The multi-thread
version has a need for
additional RAM due to the
packet buffer. In this test, the
RAM consumption reached 400
MB in 5 minutes.

Benchmark test summary. The tests partly described-above demonstrated the advantages
and disadvantages of both versions of the service. The single-thread version has proven as a
safer selection in general, always using less computer resources, at the expense of the high
packet loss rate in the case of high number of packets transferred. It definitely is a more
suitable choice for users who do not like their computer capacity to be affected. It is also the
only choice for computers equipped with a single-core CPU.
The multi-thread version has proven as a riskier choice that affects the computer
performance as the expense of the packet loss minimising. Obviously, this can be a good
choice primarily for computers with a multiple-core CPU.
At this moment, the single-thread version seems more convenient for potential users.
However, subsequent development of the application will focus on the multi-thread version
optimisation and improvement, with the single-thread version being more of a proof of
concept, or a prototype.

5.2 Performance benchmark testing of Snort

Examples of performance of Snort under the same conditions and configuration as some of
the Colander tests are included for comparison. Snort’s setting have been modified to
eliminate extra tasks in comparison to Colander, such as extensive logging, and to perform
virtually the same tasks as Colander. Colander tests No.1, No.9 and No.11 were chosen as
representative.
The comparative tests to the tests No.1 and No.9 had the same average CPU loads of 5% and
2% respectively, both with no packet loss.
The comparative test to Colander test No.11 shows an average CPU use of about 7%,
however with considerably lower packet loss of only 9% compared to Colander’s 66%. The
result is better likely due to Snort’s use of more advanced pre-processing of rules, where it
decides to only use only rules it estimates to be relevant. This result only confirms the
necessity of further development and optimisation of the multi-thread version, as shown
when comparing the result with test no. 13, where it has no packet loss, but quite high CPU
usage.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 9, September 2019 4721

5.3 Capturing the communication of an infected system

In addition to the performance tests described above, the Colander program was tested by
analysing three different cyber threats captured as described below in detail.
Trojan Banker FTC. The first threat captured in the tests was malware identified as Trojan
Banker FTC14. The malware sample that was detected is described in detail in [22]. The rule
identification number or SID where the match was found, is 25829. The matching packet is
shown in the capture portion in Fig. 5 while the contents that is defined in the rule as:
content:"/listas/out/si.php"; content:"HTTP/1.0|0D 0A|" is clearly visible in the lower part of
Fig. 6.

Fig. 4. Selected portion of communication on the client. The Black highlighted line contents the

packet that was found to match to the sample in the rule.

Fig. 5. Data part (payload) of a packet matching the rule.

NETBIOS DCERPC. The second thread active and captured in the tests was identified as
the "NETBIOS DCERPC NCACN-IP-TCP winreg InitiateSystemShutdown" attack and
started to demonstrate after the activation of the sample identified as VirutNetwork having
SHA-1 hash of
"e6c0ac72ac520f7d7def04d5f59edb58e2693246ce10c70754baa5bbb5005208". The threat
was captured by the other computer in the local network where the service was active just for
the cases when an attack occurs in the local area network.
Regarding the contents of the communication payload where only specific SMB - Server
message block messages are detected that were exchanged between computers in the local
network, it is unlikely that the direct communication of the malware with its C&C server but
the assessment of the activity as suspicious as a part of SMB protocol. The thread Sid is:
2942. The matching packet is shown in the capture portion in Fig. 7.

14 The malware SHA-1 hash value is
e449da37ed87e7643a3d177380927aad49158f4487d63bf5924a97e0f6d83514

4722 Zuzčák et al.: Intrusion Detection System for
Home Windows based Computers

Fig. 6. Selected portion of communication on the client. The green highlighted line contents the

packet that was found to match to the sample in the rule.

WannaCry. During the period when the third testing phase was performed, there was a
massive spread of the malware known as WannaCry as detailed in McAfee website [23],
which made use of the vulnerability of SMB protocol identified as ETERNALBLUE MS17-
010 described on Microsoft website [24]. The captured specimen had a SHA-1 hash:
cd79b536868efb8b2edd2db4e4100f0bd2f69e28. The program was thus tested how it can
deal with capturing and identification of this threat. The payload that was identified based on
the use of signatures with SID: 2024220 (SMB Echo Request) and SID2024218 (SMB Echo
Response) is shown in Fig. 8.

Fig. 7. WannaCry malware as captured by Colander . Print Screen of Wireshark with highlighted

payload matching one of the WannCry rules, and the WannaCry window asking for ransom

The output on the victim side looked as follows:
Threat name: ET EXPLOIT Possible ETERNALBLUE MS17-010 Echo Request (set)
Source Port: 449275
Destination Port: 445
Direction: incoming
Source IP: 192.168.1.3
Destination IP:192.168.1.2
Content: 1ÿSMB+Àÿþ@JlJmIhClBsr
Threat name: ET EXPLOIT Possible ETERNALBLUE MS17-010 Echo Response
Source Port: 445
Destination Port: 449275
Direction: outgoing
Source IP: 192.168.1.2
Destination IP:192.168.1.3
Content:1ÿSMB+˜Àÿþ@JlJmIhClBsr
All the above tests described in this section using the three known vulnerabilities have demonstrated
the functionality of Colander program because they were recorded correctly.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 9, September 2019 4723

 5.4 Pilot implementation among a set of users

The pilot implementation had three test goals. To test the system as a whole, the
communication between clients and the server, storing captured threats in the database,
simultaneous control of multiple clients. Second goal was obtaining a feedback from users,
what the usage of the application brought them, whether the installation was easy, how much
the GUI was understandable, etc. The last goal was capturing real threats. It should be
observed whether false positives happened and/or anything interesting was captured.

Regarding the gradual development and code improvement, three test phases were
performed. Primarily, the last phase provides relevant results. This phase took more than two
months, i.e. from March 4 till May 12, 2017. In this phase, the service already had a
complete capability to capture threats. In all testing phases, the single-thread version of the
program was used.
The testing was performed on 12 clients with various activity. The users selected for the test
were those with a minimal or no consideration with their computer security so that the test
was as close to the real implementation as possible.
Users appreciated easy use of the program consisting just in Colander installation together
with WinPcap. The GUI was evaluated as clear and well-arranged. Only two users
complained of the absence of any network adapters in the adapter list. It was shown that both
of them used USB WiFi adapters that WinPcap could not recognise. Therefore, this problem
could not be eliminated directly by changing the Colander client code. None of the users
observed an increased CPU load or a feeling of the computer power decrease. The Colander
implementation has proven that the operation of the system (i.e. threat capturing, sending
and storing) is proper as designed.
Captured threats. During the service testing phase, the number of captured threats was
decreasing gradually, thus eliminating primarily false positive detections due to
imperfections of the detection algorithm. Therefore, only threats detected in the third pilot
phase were taken into consideration.
The following threats belong among those that were the most frequently captured in the
testing phase or were most interesting:

INDICATOR-SCAN ipEye SYN scan, synscan portscan – capturing of these two
threats was announced by each client running under Windows 10. After more detailed local
testing, it was observed that in this case Windows 10 updates were captured that meet the
rules. This case just emphasises the necessity to make a proper manual selection of rules for
a specific situation.

PROTOCOL-ICMP PING Microsoft Windows – This is an example of a threat that
may not be a real threat. In this case, a simple ICMP echo request is captured that can be sent
in a legitimate way, e.g. for a network issue diagnosing. It can be considered as a real threat
only when it is used by an attacker in order to verify the activity of the computer as an attack
target.

OS-WINDOWS SMB startup folder access – this is an attempt to access to system files
via SMB protocol. It can be a real attack that could happen if the user allowed the file or
printer sharing including system files.

4724 Zuzčák et al.: Intrusion Detection System for
Home Windows based Computers

FILE-IDENTIFY Microsoft Windows Media download detected – the rule that
triggered the threat is intended primarily for ingress points of corporate networks. Here,
downloading of certain multimedia files is considered as a threat because it is often restricted
by corporate regulations. This could be considered as a threat because such files are able to
disseminate malicious codes like Trojans under specific circumstances.

MALWARE-BACKDOOR MISC Linux rootkit attempt – an example of apparently
false positive detection when the communication met the conditions of the rule for
evaluation as a Trojan login into the Linux system. Again, this emphasises the necessity of
proper rule selection.

OS-WINDOWS SMB Session Setup NTLMSSP unicode asn1 overflow attempt – the
threat specific for Windows XP. The error in a system library on an unpatched Windows XP
OS allows executing the commends sent on the host system.

As the above list of captured threats demonstrates, the service is able to capture threats on
different computers when operated in common real networks.

5.5 Evaluation of test results

The testing pilot phase has demonstrated the functionality of the system in the whole range
of its functions. Capturing, sending to the server and storing was done without problems. The
feedback from users was positive, the installation and control was considered as sufficiently
non-demanding. The only problem was in the WinPcap inability to identify certain network
adapters. The Colander service demonstrated the ability to capture potential threats in real
operation. The uniqueness in threat evaluation can be improved by reducing the number of
rules applied. After tests, Colander can be considered as a research tool ready to install and
increase the users’ knowledge and information on existing threats. All identified problems,
except for the issue in WinPcap non-detecting of specific network adapters, can be
suppressed or eliminated by reduction or better focusing of the ruleset applied.

6. Future prospects and development

Besides optimisation mentioned previously, the next main step in future research and the
application development will focus on anomaly detection. That means that threats detection
will not rely solely on fixed static rules but will be based on an automatic learning in the
system where Colander is installed. In addition, wider testing and selection of suitable
signature rules will be one of the focuses.
Moreover, the data gathered from Colander clients will be analysed further. The result of the
analysis can be not only detailed information about previous attacks but the prediction of
attackers’ behaviour in future attacks using various predictive techniques. An example of
such a technique is described by Hu et al. in [25].

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 9, September 2019 4725

7. Conclusions

The main objective of the paper was to describe a newly developed tool that can be used for
gathering attack data for further research. The program architecture and design was
presented. The main emphasis was given to pilot and benchmark testing results. The results
demonstrated both the efficiency of the tool, from the point of view of the system resource
demand, and primarily the ability to capture known threats (based on signatures) as
demonstrated mailny on the case of WannaCry.

References

[1] Symantec, “Internet Security Threat Report,” April 2017.
https://www.symantec.com/security-center/threat-report

[2] E. Cooke, M. Bailey, D. Watson, F. Jahanian, and J. Nazario, “The Internet motion sensor: A
distributed global scoped Internet threat monitoring system,” Technical Report CSE-TR-491-04,
University of Michigan, Electrical Engineering and Computer Science, 2004.

[3] M. Sourour, B. Adel, and A. Tarek, “Ensuring security in depth based on heterogeneous network
security technologies,” Int. J. Inf. Secur., vol. 8, pp. 233-246, 2009. Article (CrossRef Link).

[4] M. Iturbe, I-aki Garitano, Urko Zurutuza, and Roberto Uribeetxeberria, “Towards Large-Scale,
Heterogeneous Anomaly Detection Systems in Industrial Networks: A Survey of Current Trends,”
Security and Communication Networks, Vol. 2017, 2017. Article (CrossRef Link).

[5] Khan, M.A., Salah, K., “IoT security: Review, blockchain solutions, and open challenges,” Future
Generation Computer Systems, vol. 82, pp. 395-411, 2018. Article (CrossRef Link).

[6] W. Huang and J. Yang, “New network security based on cloud computing,” in Proc. of Education
Technology and Computer Science (ETCS), 2010 Second International Workshop on. IEEE, pp.
604-609, 2010. Article (CrossRef Link).

[7] Rengaraju, P., Ramanan, V. R., and Lung, C. H., “Detection and prevention of DoS attacks in
Software-Defined Cloud networks,” in Proc. of Dependable and Secure Computing, (2017) IEEE
Conference on (pp. 217-223), IEEE, 2017. Article (CrossRef Link).

[8] R. Russell, “iptables (8) - Linux man page,”. https://linux.die.net/man/8/iptables
[9] Fail2ban. https://www.fail2ban.org/wiki/index.php/Main_Page
[10] PN. Ayuso, RM Gasca and L. Lefevre, “FT-FW: A cluster-based fault-tolerant architecture for

stateful firewalls,” COMPUTERS & SECURITY, Vol. 31, Issue. 4 pp. 524-539, 2012.
Article (CrossRef Link).

[11] S. X. Wu and W. Banzhaf, “The use of computational intelligence in intrusion detection systems:
A review,” Applied Soft Computing, 10(1), pp 1-35, 2010. Article (CrossRef Link).

[12] F. Hock, and P- Kortis, “Commercial and open-source based Intrusion Detection System and
Intrusion Prevention System (IDS/IPS) design for an IP networks,” in Proc. of Emerging
eLearning Technologies and Applications (ICETA), 2015 13th International Conference on (pp.
1-4). IEEE, 2015. Article (CrossRef Link).

[13] H. Debar, D. Curry and B. Feinstein, “The Intrusion Detection Message Exchange Format
(IDMEF),” IETF, 2007. Article (CrossRef Link).

[14] B. Feinstein and G. Matthews, “The Intrusion Detection Exchange Protocol (IDXP),” IETF,
2007. Article (CrossRef Link).

[15] P. Garcia-Teodoro, J. Dıaz-Verdejoa, G. Macia-Fernandeza, E. Vazquez, “Anomaly-based
network intrusion detection: Techniques, systems and challenges” Computers & security, vol. 28,
no. 1-2, pp 18-28, 2009. Article (CrossRef Link).

[16] The Snort Project, “SNORT Users Manual 2.9.9,” chapter 3. Revision 2016.
http://manual-snort-org.s3-website-us-east-1.amazonaws.com/node27.html

[17] J. T. Rodfoss, “Comparison of Open Source Network Intrusion Detection Systems,” 2011.
https://www.duo.uio.no/bitstream/handle/10852/8951/Rodfoss.pdf

https://www.symantec.com/security-center/threat-report
https://doi.org/10.1007/s10207-009-0077-2
https://doi.org/10.1155/2017/9150965
https://doi.org/10.1016/j.future.2017.11.022
https://doi.org/10.1109/ETCS.2010.491
https://doi.org/10.1109/DESEC.2017.8073810
https://linux.die.net/man/8/iptables
https://www.fail2ban.org/wiki/index.php/Main_Page
https://doi.org/10.1016/j.cose.2012.01.011
https://doi.org/10.1016/j.asoc.2009.06.019
https://doi.org/10.1109/ICETA.2015.7558466
https://www.ietf.org/rfc/rfc4765.txt
https://www.ietf.org/rfc/rfc4767.txt
https://doi.org/10.1016/j.cose.2008.08.003
http://manual-snort-org.s3-website-us-east-1.amazonaws.com/node27.html
https://www.duo.uio.no/bitstream/handle/10852/8951/Rodfoss.pdf

4726 Zuzčák et al.: Intrusion Detection System for
Home Windows based Computers

[18] S. Antonatos, K. Anagnostakis, and E. Markatos, “Honey@ home: a new approach to large-scale
threat monitoring,” in Proc. of the 2007 ACM workshop on recurring malcode, pp. 38-45, ACM,
2007. Article (CrossRef Link).

[19] D. K. Sadhasivan and K Balasubramanian, “A Fusion of Multiagent Functionalities for Effective
Intrusion Detection System,” Security and Communication Networks, Vol. 2017, 2017.
Article (CrossRef Link).

[20] R. Kozik and M Choras, “Pattern Extraction Algorithm for NetFlow-Based Botnet Activities
Detection,” Security and Communication Networks, Vol. 2017, 2017. Article (CrossRef Link).

[21] Netmarketshare, “Market Share Reports,”. http://www.netmarketshare.com
[22] Sophos, “Troj/Banker-FTC,” 2017. https://www.sophos.com/en-us/threat-center/threat-

analyses/viruses-and-spyware/Troj~Banker-FTC/detailed-analysis.aspx
[23] McAfee, “An Analysis of the WannaCry Ransomware Outbreak,” 2017.

https://securingtomorrow.mcafee.com/executive-perspectives/analysis-wannacry-ransomware-
outbreak/

[24] Microsoft, “Microsoft Security Bulletin MS17-010 – Critical,” 2017.
https://docs.microsoft.com/en-us/security-updates/securitybulletins/2017/ms17-010.

[25] H. Hu, H. Zhang, Y. Liu and Y. Wang, “Quantitative Method for Network Security Situation
Based on Attack Prediction,” Security and Communication Networks, Vol 2017, 2017.
Article (CrossRef Link).

[26] Luo, Y., Xiang, K., Fan, J., Zhang, C. “Distributed intrusion detection with intelligent network
interfaces for future networks,” in Proc. of IEEE International Conference on Communications,
2009. Article (CrossRef Link).

Dr. Matej Zuzčák
Matej Zuzčák attained his Mgr. and RNDr. degrees in Information Systems from
Department of Informatics and Computers of the Faculty of Science at University of
Ostrava in 2016 and 2017. Since 2016 he has been working on his dissertation thesis within
his Ph.D study at the Department of Informatics and Computers. His scientific research is
focused mainly on honeypots, honeynets, network security, expert systems and data
analysis. Since 2017 he is the team leader of CSIRT OU. He is also a member of The
Honeynet Project in Czech chapter.

Dr. Tomáš Sochor
Senior lecturer at the Department of Informatics and Computers of the University of
Ostrava. His research has been recently focused on computer network security, honeypots,
spam detection techniques, web anonymization and ad-hoc network routing.

Milan Zenka
Milan Zenka attained his Mgr. degree in Information Systems from Department of
Informatics and Computers of the Faculty of Science at University of Ostrava in 2017. He
has been working towards attaining Ph.D at the Department of Informatics and Computers
since 2017. His research is based on development of Windows based IDS. He has been a
member of CSIRT OU since 2017.

https://doi.org/10.1145/1314389.1314398
https://doi.org/10.1155/2017/6216078
https://doi.org/10.1155/2017/6047053
http://www.netmarketshare.com/
https://www.sophos.com/en-us/threat-center/threat-analyses/viruses-and-spyware/Troj%7EBanker-FTC/detailed-analysis.aspx
https://www.sophos.com/en-us/threat-center/threat-analyses/viruses-and-spyware/Troj%7EBanker-FTC/detailed-analysis.aspx
https://securingtomorrow.mcafee.com/executive-perspectives/analysis-wannacry-ransomware-outbreak/
https://securingtomorrow.mcafee.com/executive-perspectives/analysis-wannacry-ransomware-outbreak/
https://docs.microsoft.com/en-us/security-updates/securitybulletins/2017/ms17-010
https://doi.org/10.1155/2017/3407642
https://doi.org/10.1109/ICC.2009.5198928

