Alfaidi, Aseel;Alshahrani, Abdullah;Aljohani, Maha
International Journal of Computer Science & Network Security
/
v.22
no.9
/
pp.195-207
/
2022
COVID-19 has remained one of the most serious health crises in recent history, resulting in the tragic loss of lives and significant economic impacts on the entire world. The difficulty of controlling COVID-19 poses a threat to the global health sector. Considering that Artificial Intelligence (AI) has contributed to improving research methods and solving problems facing diverse fields of study, AI algorithms have also proven effective in disease detection and early diagnosis. Specifically, acoustic features offer a promising prospect for the early detection of respiratory diseases. Motivated by these observations, this study conceptualized a speech-based diagnostic model to aid in COVID-19 diagnosis. The proposed methodology uses speech signals from confirmed positive and negative cases of COVID-19 to extract features through the pre-trained Visual Geometry Group (VGG-16) model based on Mel spectrogram images. This is used in addition to the K-means algorithm that determines effective features, followed by a Genetic Algorithm-Support Vector Machine (GA-SVM) classifier to classify cases. The experimental findings indicate the proposed methodology's capability to classify COVID-19 and NOT COVID-19 of varying ages and speaking different languages, as demonstrated in the simulations. The proposed methodology depends on deep features, followed by the dimension reduction technique for features to detect COVID-19. As a result, it produces better and more consistent performance than handcrafted features used in previous studies.
Journal of the Korea Institute of Information Security & Cryptology
/
v.34
no.5
/
pp.875-884
/
2024
The proliferation of IoT networks has led to an increase in cyber attacks, highlighting the importance of Network Intrusion Detection Systems (NIDS). To overcome the limitations of traditional NIDS and cope with more sophisticated cyber attacks, there is a trend towards integrating artificial intelligence models into NIDS. However, AI-based NIDS are vulnerable to adversarial attacks, which exploit the weaknesses of algorithm. Model Type Inference Attack is one of the types of attacks that infer information inside the model. This paper proposes an optimized framework for Model Type Inference attacks against NIDS models, applying more realistic assumptions. The proposed method successfully trained an attack model to infer the type of NIDS models with an accuracy of approximately 0.92, presenting a new security threat to AI-based NIDS and emphasizing the importance of developing defence method against such attacks.
The Journal of the Institute of Internet, Broadcasting and Communication
/
v.16
no.6
/
pp.43-54
/
2016
The occurrence of cyber crime is on the rise every year, and the security control center, which should play a crucial role in monitoring and early response against the cyber attacks targeting various information systems, its importance has increased accordingly. Every endeavors to prevent cyber attacks is being attempted by information security personnel of government and financial sector's security control center, threat response Center, cyber terror response center, Cert Team, SOC(Security Operator Center) and else. The ordinary method to monitor cyber attacks consists of utilizing the security system or the network security device. It is anticipated, however, to be insufficient since this is simply one dimensional way of monitoring them based on signatures. There has been considerable improvement of the security control system and researchers also have conducted a number of studies on monitoring methods to prevent threats to security. In accordance with the environment changes from ESM to SIEM, the security control system is able to be provided with more input data as well as generate the correlation analysis which integrates the processed data, by extraction and parsing, into the potential scenarios of attack or threat. This article shows case studies how to detect the threat to security in effective ways, from the initial phase of the security control system to current SIEM circumstances. Furthermore, scenarios based security control systems rather than simple monitoring is introduced, and finally methods of producing the correlation analysis and its verification methods are presented. It is expected that this result contributes to the development of cyber attack monitoring system in other security centers.
Journal of the Korea Institute of Information Security & Cryptology
/
v.29
no.2
/
pp.331-346
/
2019
Global cyber threats to industrial control systems are increasing. As a result, related research and cooperation are actively underway. However, we are focusing on strengthening security for physical network separation and perimeter. Internal threats are still vulnerable. This is because the easiest and strongest countermeasure is to enhance border security, and solutions for enhancing internal security are not easy to apply due to system availability problems. In particular, there are many vulnerabilities due to the large number of legacy systems remaining throughout industrial control systems. Unless these vulnerable systems are newly built according to the security framework, it is necessary to respond to these vulnerable systems, and therefore, a security solution considering availability has been verified and suggested. Using Sysmon and ELK, security solutions can detect Cyber-threat that are difficult to detect in unstructured ICS.
Kim, Hyeonggyeom;Han, Seokmin;Lee, Suchul;Lee, Jun-Rak
Journal of Internet Computing and Services
/
v.19
no.5
/
pp.67-75
/
2018
According to Symantec's Internet Security Threat Report(2018), Internet security threats such as Cryptojackings, Ransomwares, and Mobile malwares are rapidly increasing and diversifying. It means that detection of malwares requires not only the detection accuracy but also versatility. In the past, malware detection technology focused on qualitative performance due to the problems such as encryption and obfuscation. However, nowadays, considering the diversity of malware, versatility is required in detecting various malwares. Additionally the optimization is required in terms of computing power for detecting malware. In this paper, we present Stream Order(SO)-CNN and Incremental Coordinate(IC)-CNN, which are malware detection schemes using CNN(Convolutional Neural Network) that effectively detect intelligent and diversified malwares. The proposed methods visualize each malware binary file onto a fixed sized image. The visualized malware binaries are learned through GoogLeNet to form a deep learning model. Our model detects and classifies malwares. The proposed method reveals better performance than the conventional method.
The Journal of Korean Institute of Communications and Information Sciences
/
v.40
no.8
/
pp.1551-1559
/
2015
Recently, the performance of smart devices is almost similar to that of the existing PCs, thus the users of smart devices can perform similar works such as messengers, SNSs(Social Network Services), smart banking, etc. originally performed in PC environment using smart devices. Although the development of smart devices has led to positive impacts, it has caused negative changes such as an increase in security threat aimed at mobile environment. Specifically, the threats of mobile devices, such as leaking private information, generating unfair billing and performing DDoS(Distributed Denial of Service) attacks has continuously increased. Over 80% of the mobile devices use android platform, thus, the number of damage caused by mobile malware in android platform is also increasing. In this paper, we propose android based malware detection mechanism using time-series analysis, which is one of statistical-based detection methods.We use auto-regressive moving-average model which is extracting accurate predictive values based on existing data among time-series model. We also use fast and exact malware detection method by extracting possible malware data through Z-Score. We validate the proposed methods through the experiment results.
Journal of the Korea Institute of Information and Communication Engineering
/
v.18
no.5
/
pp.1122-1127
/
2014
WLAN is affordability, flexibility, and ease of installation, use the smart device due to the dissemination and the AP (Access Point) to the simplification of the Office building, store, at school. Wi-Fi radio waves because it uses the medium of air transport to reach areas where security threats are always exposed to illegal AP installation, policy violations AP, packet monitoring, AP illegal access, external and service access, wireless network sharing, MAC address, such as a new security threat to steal. In this paper, signature-based of wireless intrusion detection system for Snort to suggest how to develop. The public can use hacking tools and conduct a mock hacking, Snort detects an attack of hacking tools to verify from experimental verification of the suitability of the thesis throughout.
The Journal of Korean Institute of Communications and Information Sciences
/
v.40
no.2
/
pp.334-348
/
2015
Widespread use of smart devices accompanies increase of use of access point (AP), which enables the connection to the wireless network. If the appropriate security is not served when a user tries to connect the wireless network through an AP, various security problems can arise due to the rogue APs. In this paper, we are going to examine the threat by evil-twin, which is a kind of rogue APs. Most of recent researches for detecting rogue APs utilize the measured time difference, such as round trip time (RTT), between the evil-twin and authorized APs. These methods, however, suffer from the low detection rate in the network congestion. Due to these reasons, in this paper, we suggest a new factor, packet inter-arrival time (PIAT), in order to detect evil-twins. By using both RTT and PIAT as the learning factors for the support vector machine (SVM), we determine the non-linear metric to classify evil-twins and authorized APs. As a result, we can detect evil-twins with the probability of up to 96.5% and at least 89.75% even when the network is congested.
International Journal of Computer Science & Network Security
/
v.22
no.10
/
pp.257-261
/
2022
Diseases of agricultural plants in recent years have spread greatly across the regions of the Kyrgyz Republic and pose a serious threat to the yield of many crops. The consequences of it can greatly affect the food security for an entire country. Due to force majeure, abnormal cases in climatic conditions, the annual incomes of many farmers and agricultural producers can be destroyed locally. Along with this, the rapid detection of plant diseases also remains difficult in many parts of the regions due to the lack of necessary infrastructure. In this case, it is possible to pave the way for the diagnosis of diseases with the help of the latest achievements due to the possibilities of feedback from the farmer - developer in the formation and updating of the database of sick and healthy plants with the help of advances in computer vision, developing on the basis of machine and deep learning. Currently, model training is increasingly used already on publicly available datasets, i.e. it has become popular to build new models already on trained models. The latter is called as transfer training and is developing very quickly. Using a publicly available data set from PlantVillage, which consists of 54,306 or NewPlantVillage with a data volumed with 87,356 images of sick and healthy plant leaves collected under controlled conditions, it is possible to build a deep convolutional neural network to identify 14 types of crops and 26 diseases. At the same time, the trained model can achieve an accuracy of more than 99% on a specially selected test set.
As the expansion of digital transformation, we are more exposed to the threat of cyber attacks, and many institution or company is operating a signature-based intrusion prevention system at the forefront of the network to prevent the inflow of attacks. However, in order to provide appropriate services to the related ICT system, strict blocking rules cannot be applied, causing many false events and lowering operational efficiency. Therefore, many research projects using artificial intelligence are being performed to improve attack detection accuracy. Most researches were performed using a specific research data set which cannot be seen in real network, so it was impossible to use in the actual system. In this paper, we propose a technique for classifying major attack keywords in the security event log collected from the actual system, assigning a weight to each key keyword, and then performing a similarity check using TF-IDF to determine whether an actual attack has occurred.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.