• Title/Summary/Keyword: network optimization

Search Result 2,239, Processing Time 0.035 seconds

Constraint satisfaction algorithm in constraint network using simulated annealing method (Simulated Annealing을 이용한 제약 네트워크에서의 제약 충족 방식에 관한 연구)

  • Cha, Joo-Heon;Lee, In-Ho;Kim, Jay J.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.9
    • /
    • pp.116-123
    • /
    • 1997
  • We have already presented the constraint satisfaction algorithm which could solve the closed loop porblem in constraint network by using local constraint propagation, variable elimination and constraint modularization. With this algorithm, we have implemented a knowledge-based system (intelligent CAD) for supporting machine design interactively. In this paper, we present newer constraint satisfaction algorithm which can solve inequalities or under-constrained problems in constraint network, interactively and effi- ciently. This algorithm is a hybrid type of using both declarative description (constraint representation) and optimization algorithm (Simulated Annealing), simultaneously. The under-constrained problems are represented by constraint networks and satisfied completely with this algorithm. The usefulness of our algorithm will be illustrated by the application to a gear design.

  • PDF

Structural monitoring and maintenance by quantitative forecast model via gray models

  • C.C. Hung;T. Nguyen
    • Structural Monitoring and Maintenance
    • /
    • v.10 no.2
    • /
    • pp.175-190
    • /
    • 2023
  • This article aims to quantitatively predict the snowmelt in extreme cold regions, considering a combination of grayscale and neural models. The traditional non-equidistant GM(1,1) prediction model is optimized by adjusting the time-distance weight matrix, optimizing the background value of the differential equation and optimizing the initial value of the model, and using the BP neural network for the first. The adjusted ice forecast model has an accuracy of 0.984 and posterior variance and the average forecast error value is 1.46%. Compared with the GM(1,1) and BP network models, the accuracy of the prediction results has been significantly improved, and the quantitative prediction of the ice sheet is more accurate. The monitoring and maintenance of the structure by quantitative prediction model by gray models was clearly demonstrated in the model.

Structural Optimization and Improvement of Initial Weight Dependency of the Neural Network Model for Determination of Preconsolidation Pressure from Piezocone Test Result (피에조콘을 이용한 선행압밀하중 결정 신경망 모델의 구조 최적화 및 초기 연결강도 의존성 개선)

  • Kim, Young-Sang;Joo, No-Ah;Park, Hyun-Il;Park, Sol-Ji
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.3C
    • /
    • pp.115-125
    • /
    • 2009
  • The preconsolidation pressure has been commonly determined by oedometer test. However, it can also be determined by insitu test, such as piezocone test with theoretical and(or) empirical correlations. Recently, Neural Network (NN) theory was applied and some models were proposed to estimate the preconsolidation pressure or OCR. It was already found that NN model can come over the site dependency and prediction accuracy is greatly improved when compared with present theoretical and empirical models. However, since the optimization process of synaptic weights of NN model is dependent on the initial synaptic weights, NN models which are trained with different initial weights can't avoid the variability on prediction result for new database even though they have same structure and use same transfer function. In this study, Committee Neural Network (CNN) model is proposed to improve the initial weight dependency of multi-layered neural network model on the prediction of preconsolidation pressure of soft clay from piezocone test result. Prediction results of CNN model are compared with those of conventional empirical and theoretical models and multi-layered neural network model, which has the optimized structure. It was found that even though the NN model has the optimized structure for given training data set, it still has the initial weight dependency, while the proposed CNN model can improve the initial weight dependency of the NN model and provide a consistent and precise inference result than existing NN models.

Cost-Effective Inter-LMA Domain Distributed Mobility Control Scheme in PMIPv6 Networks (PMIPv6 네트워크에서 비용효과적인 도메인 간의 분산 이동성 제어기법)

  • Jang, Soon-Ho;Jeong, Jong-Pil
    • The KIPS Transactions:PartC
    • /
    • v.19C no.3
    • /
    • pp.191-208
    • /
    • 2012
  • Proxy Mobile IPv6 (PMIPv6) is designed to provide network-based mobility management support to an MN without any involvement of the MN in the mobility related signalling, hence, the proxy mobility entity performs all related signalling on behalf of the MN. The new principal functional entities of PMIPv6 are the local mobility anchor (LMA) and the mobile access gateway (MAG). In PMIPv6, all the data traffic sent from the MN gets routed to the LMA through a tunnel between the LMA and the MAG, but it still has the single point of failure (SPOF) and bottleneck state of traffic. To solve these problems, various approaches directed towards PMIPv6 performance improvements such as route optimization proposed. But these approaches add additional signalling to support MN's mobility, which incurs extra network overhead and still has difficult to apply to multiple-LMA networks. In this paper, we propose a improved route optimization in PMIPv6-based multiple-LMA networks. All LMA connected to the proxy internetworking gateway (PIG), which performs inter-domain distributed mobility control. And, each MAG keeps the information of all LMA in PMIPv6 domain, so it is possible to perform fast route optimization. Therefore, it supports route optimization without any additional signalling because the LMA receives the state information of route optimization from PIG.

Efficiency Evaluation of Genetic Algorithm Considering Building Block Hypothesis for Water Pipe Optimal Design Problems (상수관로 최적설계 문제에 있어 빌딩블록가설을 고려한 유전 알고리즘의 효율성 평가)

  • Lim, Seung Hyun;Lee, Chan Wook;Hong, Sung Jin;Yoo, Do Guen
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.5
    • /
    • pp.294-302
    • /
    • 2020
  • In a genetic algorithm, computer simulations are performed based on the natural evolution process of life, such as selection, crossover, and mutation. The genetic algorithm searches the approximate optimal solution by the parallel arrangement of Schema, which has a short definition length, low order, and high adaptability. This study examined the possibility of improving the efficiency of the optimal solution by considering the characteristics of the building block hypothesis, which are one of the key operating principles of a genetic algorithm. This study evaluated the efficiency of the optimization results according to the gene sequence for the implementation in solving problems. The optimal design problem of the water pipe was selected, and the genetic arrangement order reflected the engineering specificity by dividing into the existing, the network topology-based, and the flowrate-based arrangement. The optimization results with a flowrate-based arrangement were, on average, approximately 2-3% better than the other batches. This means that to increase the efficiency of the actual engineering optimization problem, a methodology that utilizes clear prior knowledge (such as hydraulic properties) to prevent such excellent solution characteristics from disappearing is essential. The proposed method will be considered as a tool to improve the efficiency of large-scale water supply network optimization in the future.

Optimization of Agri-Food Supply Chain in a Sustainable Way Using Simulation Modeling

  • Vostriakova, Viktorija;Kononova, Oleksandra;Kravchenko, Sergey;Ruzhytskyi, Andriy;Sereda, Nataliia
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.3
    • /
    • pp.245-256
    • /
    • 2021
  • Poor logistical infrastructure and agri-food supply chain management leads to significant food waste in logistic system. The concept of the sustainable value added agri-food chains requires defined approach to the analysis of the existing situation, possible improving strategies and also assessment of these changes impact on further development. The purpose of research is to provide scientific substantiation of theoretical and methodological principles and develop practical recommendations for the improvement of the agri-food logistics distribution system. A case study methodology is used in this article. The research framework is based on 4 steps: Value Stream Mapping (VSM), Gap and Process Analysis, Validation and Improvement Areas Definition and Imitation Modelling. This paper presents the appropriateness of LEAN logistics tools using, in particular, Value Stream Mapping (VSM) for minimizing logistic losses and Simulation Modeling of possible logistics distribution system improvement results. The algorithm of VSM analysis of the agri-food supply chain, which involves its optimization by implementing the principles of sustainable development at each stage, is proposed. The methodical approach to the analysis of possible ways for optimizing the operation of the logistics system of the agri-food distribution is developed. It involves the application of Value Stream Mapping, i.e. designing of stream maps of the creation of the added value in the agri-food supply chain for the current and future state based on the minimization of logistic losses. Simulation modeling of the investment project on time optimization in the agri-food supply chain and economic effect of proposed improvements in logistics product distribution system functioning at the level of the investigated agricultural enterprise has been determined. Improvement of logistics planning and coordination of operations in the supply chain and the innovative pre-cooling system proposed to be introduced have a 3-year payback period and almost 75-80% probability. Based on the conducted VSM analysis of losses in the agri-food supply chain, there have been determined the main points, where it is advisable to conduct optimization changes for the achievement of positive results and the significant economic effect from the proposed measures has been confirmed. In further studies, it is recommended to focus on identifying the synergistic effect of the agri-food supply chain optimization on the basis of sustainable development.

Intelligent Scheduling Control of Networked Control Systems with Networked-induced Delay and Packet Dropout

  • Li, Hongbo;Sun, Zengqi;Chen, Badong;Liu, Huaping;Sun, Fuchun
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.6
    • /
    • pp.915-927
    • /
    • 2008
  • Networked control systems(NCSs) have gained increasing attention in recent years due to their advantages and potential applications. The network Quality-of-Service(QoS) in NCSs always fluctuates due to changes of the traffic load and available network resources. To handle the network QoS variations problem, this paper presents an intelligent scheduling control method for NCSs, where the sampling period and the control parameters are simultaneously scheduled to compensate the effect of QoS variation on NCSs performance. For NCSs with network-induced delays and packet dropouts, a discrete-time switch model is proposed. By defining a sampling-period-dependent Lyapunov function and a common quadratic Lyapunov function, the stability conditions are derived for NCSs in terms of linear matrix inequalities(LMIs). Based on the obtained stability conditions, the corresponding controller design problem is solved and the performance optimization problem is also investigated. Simulation results are given to demonstrate the effectiveness of the proposed approaches.

Hybrid Multiple Hub-and-Spoke Vehicle Routing Model for Hyundai Mobis Automotive Service Parts Transportation Planning (하이브리드 다중 Hub-and-Spoke 차량 경로 계획 모형 : 현대모비스 자동차 보수용 부품 사내 운송 계획 최적화를 중심으로)

  • Lee, Yong-Dae;Jeong, Hyun-Jong;Son, Young-Soo;Yoon, Chi-Whan
    • Korean Management Science Review
    • /
    • v.28 no.3
    • /
    • pp.1-13
    • /
    • 2011
  • Hub-and-spoke transportation network is a powerful and useful network structure that takes full advantage of economies of scale on routes between hubs. In recent studies, the network structure is extended to hybrid hub-andspoke that allows direct transportation between spokes. In this study, we considered more extended network structure which is called hybrid multiple hub-and-spoke that has multiple hubs and allows direct transportation between spokes. We developed a mathematical optimization model for automotive service parts transportation planning under hybrid multiple hub-and-spoke network structure. The model suggests a long-term transportation route planning and a short-term vehicle assignment planning. The model is verified by simulation and validated in real world application to Hyundai Mobis automotive service parts transportation planning. From the simulation result, the model reduced the transportation cost about 24.7%, the total distance about 6.8% and the CO2 emissions about 8.8%. In real world application for 6 months from July to December 2010, the model reduced the transportation cost about 9.1% by changing the long-term transportation route without daily vehicle assignment planning.

Layer Selection Algorithms of H.264/SVC Streams for Network Congestion Control (네트워크 혼잡 제어를 위한 H.264/SVC 스트림의 계층 선택 알고리즘)

  • Kim, Nam-Yun;Hwang, Ki-Tae
    • Journal of Korea Multimedia Society
    • /
    • v.14 no.1
    • /
    • pp.44-53
    • /
    • 2011
  • H.264/SVC provides scalable video streams which consist of a base layer and one or more enhancement layers. Thus, it can efficiently adapt encoded streams to individual network conditions by dropping some layers of bit streams. However, on a dynamic environment such as the Internet, random packet losses due to network congestion can cause drastic effect on SVC quality. To avoid network congestion, the rate of video streams should be adjusted by carefully selecting a layer of each stream. In this paper, we propose three layer selection algorithms which can avoid network congestion by using the rate-distortion characteristics of streams. Simulation results show that FS(Far-Sighted) algorithm can maximize the overall PSNR value of streams by efficiently using the characteristics of video streams.

A Study on Dual Response Approach Combining Neural Network and Genetic Algorithm (인공신경망과 유전알고리즘 기반의 쌍대반응표면분석에 관한 연구)

  • Arungpadang, Tritiya R.;Kim, Young Jin
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.39 no.5
    • /
    • pp.361-366
    • /
    • 2013
  • Prediction of process parameters is very important in parameter design. If predictions are fairly accurate, the quality improvement process will be useful to save time and reduce cost. The concept of dual response approach based on response surface methodology has widely been investigated. Dual response approach may take advantages of optimization modeling for finding optimum setting of input factor by separately modeling mean and variance responses. This study proposes an alternative dual response approach based on machine learning techniques instead of statistical analysis tools. A hybrid neural network-genetic algorithm has been proposed for the purpose of parameter design. A neural network is first constructed to model the relationship between responses and input factors. Mean and variance responses correspond to output nodes while input factors are used for input nodes. Using empirical process data, process parameters can be predicted without performing real experimentations. A genetic algorithm is then applied to find the optimum settings of input factors, where the neural network is used to evaluate the mean and variance response. A drug formulation example from pharmaceutical industry has been studied to demonstrate the procedures and applicability of the proposed approach.