References
- Arungpadang, T. R. and Kim, Y. J. (2012), Robust Parameter Design Based on Back Propagation Neural Network, Management Science (The Korean OR/MS Society), 29(3), 81-89.
- Chang, H. H. (2005), Applications of Neural Networks and Genetic Algorithms to Taguchi's Robust Design, International Journal of Electronic Business Management, 3(2), 90-96.
- Chang, H. H. (2008), A Data Mining Approach to Dynamic Multiple Responses in Taguchi Experimental Design, Expert Systems with Applications, 35(3), 1095-1103. https://doi.org/10.1016/j.eswa.2007.08.005
- Chang, H. H. and Chen, Y. K. (2011), Neuro-Genetic Approach to Optimize Parameter Design of Dynamic Multiresponse Expreiments, Applied Soft Computing, 11, 436-442. https://doi.org/10.1016/j.asoc.2009.12.002
- Cook, D. F., Ragsdale, C. T., and Major, R. L. (2000), Combining a Neural Network with a Genetic Algorithm for Process Parameter Optimization. Engineering Application of Artificial Intelligence, 13(4), 391-396. https://doi.org/10.1016/S0952-1976(00)00021-X
- Das, P. (2010), Hybridization of Artificial Neural Network using Desirability Functions for Process Optimization, International Journal for Quality Research, 4(1), 37-50.
- Deng, Z. H., Zhang, X. H., Liu, W., and Cao, H. (2009), A Hybrid Model Using Genetic Algorithm and Neural Network for Process Parameters Optimization in NC Camshaft Grinding, International Journal of Advnaced Manufacturing Technology, 45, 859-866. https://doi.org/10.1007/s00170-009-2029-4
- Kim, H.Y. (2005) Development of Dual Response Approaches with Mean Adjustment, Master's Thesis, KAIST.
- Koksoy, O. and Yalcinoz, T. (2005), A Hopfield Neural Network Approach to the Dual Response Problem, Quality and Reliability Engineering International, 21, 595-603. https://doi.org/10.1002/qre.675
- Leon, R. V., Shoemaker, A. C., and Kacker, R. N. (1987), Performance Measures Independent of Adjustment : An Explanation and Extension of Taguchi's Signal-to-Noise Ratios (with discussions), Technometrics, 29, 253-285. https://doi.org/10.1080/00401706.1987.10488231
- Ma, H. Y. and Su, C. T. (2010), Applying Hierarchical Genetic Algorithm Based Neural Network and Multiple Objective Evolutionary Algorithm to Optimize Parameter Design with Dynamic Characteristics, Journal of Quality, 17(4), 311-325.
- Ozcelik, B. and Erzurumlu, T. (2006), Comparison of the Warpage Optimization in the Plastic Injection Molding Using ANOVA, Neural Network Model and Genetic Algorithm, Journal of Materials Processing Technology, 171, 437-445. https://doi.org/10.1016/j.jmatprotec.2005.04.120
- Passino, K. M. (2005), Biomimicry for Optimization, Control, and Automation, Springer-Verlag, London, UK.
- Robinson, T. J., Borror, C. M., and Myers, R. H. (2004), Robust Parameter Design : A Review, Quality and Reliability Engineering International, 20(1), 81-101. https://doi.org/10.1002/qre.602
- Rowlands, H., Packianather, M. S., and Oztemel, E. (1996), Using Artificial Neural Networks for Experimental Design in Off-line Quality, Journal of Systems Engineering, 6(1), 46-59.
- Sathiya, P., Abdul Jaleel, M. Y., Katherasan, D., and Shanmugarajan, B. (2011), Optimization of Laser Butt Welding Parameters with Multiple Performance Characteristics, Optics and Laser Technology, 43, 660-673. https://doi.org/10.1016/j.optlastec.2010.09.007
- Sathiya, P., Panneerselvam, K., and Soundararajan, R. (2012), Optimal Design for Laser Beam Butt Welding Process Parameter Using Artificial Neural Networks and Genetic Algorithm for Super Austenitic Stainless Steel, Optics and Laser Technology, 44, 1905-1914. https://doi.org/10.1016/j.optlastec.2012.01.025
- Shi, X., Schillings, P., and Boyd, D. (2004), Applying Artificial Neural Networks and Virtual Experimental Design to Quality Improvement of Two Industrial Processes, International Journal of Production Research, 42(1), 101-118. https://doi.org/10.1080/00207540310001602937
- So, W. J. and Yum, B. J. (2012), A Comparison of Parameter Design Methods for Multiple Performance Characteristics, Journal of the Korean Institute of Industrial Engineers, 38(3), 198-207. https://doi.org/10.7232/JKIIE.2012.38.3.198
- Su, C. T. and Hsieh, K. L. (1998), Applying Neural Network Approach to Achieve Robust Design for Dynamic Quality Characteristics, International Journal of Quality and Reliability Management, 15(5), 509-519. https://doi.org/10.1108/02656719810196243
- Subramanian, N., Yajnik, A., and Murthy, R. S. (2004), Artificial Neural Network as an Alternative to Multiple Regression Analysis in Optimizing Formulation Parameters of Cytarabine Liposomes, AAPS PharmSci Tech, 5(1), E4. https://doi.org/10.1208/pt050104
- Vining, G. G. and Myers R. H. (1990), Combining Taguchi and Response Surface Philosophies : A Dual Response Approach, Journal of Quality Technology, 22(1), 38-45. https://doi.org/10.1080/00224065.1990.11979204
- Zhou, X. Z., Ma, Y. J., Tu, Y. L., and Feng, Y. (2013), Ensemble of Surrogates for Dual Response Surface Modeling in Robust Parameter Design, Quality and Reliability Engineering International, 29(2), 173-197. https://doi.org/10.1002/qre.1298