• Title/Summary/Keyword: network optimization

Search Result 2,239, Processing Time 0.032 seconds

Base Station Assisted Optimization of Hierarchical Routing Protocol in Wireless Sensor Network (WSN 에서 베이스스테이션을 이용한 계층적 라우팅 프로토콜 최적화)

  • Kusdaryono, Aries;Lee, Kyoung-Oh
    • Annual Conference of KIPS
    • /
    • 2011.04a
    • /
    • pp.564-567
    • /
    • 2011
  • Preserving energy of sensor node in wireless sensor network is an effort to prolong the lifetime of network. Energy of sensor node is very crucial because battery powered and irreplaceable. Energy conservation of sensor node is an effort to reduce energy consumption in order to preserve resource for network lifetime. It can be achieved through efficient energy usage by reducing consumption of energy or decrease energy usage while achieving a similar outcome. In this paper, we propose optimization of energy efficient base station assisted hierarchical routing protocol in wireless sensor network, named BSAH, which use base station to controlled overhead of sensor node and create clustering to distribute energy dissipation and increase energy efficiency of all sensor node. Main idea of BSAH is based on the concept of BeamStar, which divide sensor node into group by base station uses directional antenna and maximize the computation energy in base station to reduce computational energy in sensor node for conservation of network lifetime. The performance of BSAH compared to PEGASIS and CHIRON based of hierarchical routing protocol. The simulation results show that BSAH achieve 25% and 30% of improvement on network lifetime.

Sustainable Closed-loop Supply Chain Model using Hybrid Meta-heuristic Approach: Focusing on Domestic Mobile Phone Industry (혼합형 메타휴리스틱 접근법을 이용한 지속가능한 폐쇄루프 공급망 네트워크 모델: 국내 모바일폰 산업을 중심으로)

  • YoungSu Yun
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.29 no.1
    • /
    • pp.49-62
    • /
    • 2024
  • In this paper, a sustainable closed-loop supply chain (SCLSC) network model is proposed for domestic mobile phone industry. Economic, environmental and social factors are respectively considered for reinforcing the sustainability of the SCLSC network model. These three factors aim at minimizing total cost, minimizing total amount of CO2 emission, and maximizing total social influence resulting from the establishment and operation of facilities at each stage of the SCLSC network model. Since they are used as each objective function in modeling, the SCLSC network model can be a multi-objective optimization problem. A mathematical formulation is used for representing the SCLSC network model and a hybrid meta-heuristic approach is proposed for efficiently solving it. In numerical experiment, the performance of the proposed hybrid meta-heuristic approach is compared with those of conventional meta-heuristic approaches using some scales of the SCLSC network model. Experimental results shows that the proposed hybrid meta-heuristic approach outperforms conventional meta-heuristic approaches.

Optimal Control of Induction Motor Using Immune Algorithm Based Fuzzy Neural Network

  • Kim, Dong-Hwa;Cho, Jae-Hoon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1296-1301
    • /
    • 2004
  • Fuzzy logic, neural network, fuzzy-neural network play an important as the key technology of linguistic modeling for intelligent control and decision making in complex systems. The fuzzy -neural network (FNN) learning represents one of the most effective algorithms to build such linguistic models. This paper proposes learning approach of fuzzy-neural network by immune algorithm. The proposed learning model is presented in an immune based fuzzy-neural network (FNN) form which can handle linguistic knowledge by immune algorithm. The learning algorithm of an immune based FNN is composed of two phases. The first phase used to find the initial membership functions of the fuzzy neural network model. In the second phase, a new immune algorithm based optimization is proposed for tuning of membership functions and structure of the proposed model.

  • PDF

An Immune-Fuzzy Neural Network For Dynamic System

  • Kim, Dong-Hwa;Cho, Jae-Hoon
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2004.10a
    • /
    • pp.303-308
    • /
    • 2004
  • Fuzzy logic, neural network, fuzzy-neural network play an important as the key technology of linguistic modeling for intelligent control and decision making in complex systems. The fuzzy-neural network (FNN) learning represents one of the most effective algorithms to build such linguistic models. This paper proposes learning approach of fuzzy-neural network by immune algorithm. The proposed learning model is presented in an immune based fuzzy-neural network (FNN) form which can handle linguistic knowledge by immune algorithm. The learning algorithm of an immune based FNN is composed of two phases. The first phase used to find the initial membership functions of the fuzzy neural network model. In the second phase, a new immune algorithm based optimization is proposed for tuning of membership functions and structure of the proposed model.

  • PDF

Development of Rainfall Forecastion Model Using a Neural Network (신경망이론을 이용한 강우예측모형의 개발)

  • 오남선
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1996.10a
    • /
    • pp.253-256
    • /
    • 1996
  • Rainfall is one of the major and complicated elements of hydrologic system. Accurate prediction of rainfall is very important to mitigate storm damage. The neural network is a good model to be applied for the classification problem, large combinatorial optimization and nonlinear mapping. In this dissertation, rainfall predictions by the neural network theory were presented. A multi-layer neural network was constructed. The network learned continuous-valued input and output data. The network was used to predict rainfall. The online, multivariate, short term rainfall prediction is possible by means of the developed model. A multidimensional rainfall generation model is applied to Seoul metropolitan area in order to generate the 10-minute rainfall. Application of neural network to the generated rainfall shows good prediction. Also application of neural network to 1-hour real data in Seoul metropolitan area shows slightly good predictions.

  • PDF

Hopfield Network for Partitioning of Field of View (FOV 분할을 위한 Hopfield Network)

  • Cha, Young-Youp
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.2
    • /
    • pp.120-125
    • /
    • 2002
  • An optimization approach is used to partition the field of view. A cost function is defined to represent the constraints on the solution, which is then mapped onto a two-dimensional Hopfield neural network for minimization. Each neuron in the network represents a possible match between a field of view and one or multiple objects. Partition is achieved by initializing each neuron that represents a possible match and then allowing the network to settle down into a stable state. The network uses the initial inputs and the compatibility measures between a field of view and one or multiple objects to find a stable state.

Reliability-guaranteed multipath allocation algorithm in mobile network

  • Jaewook Lee;Haneul Ko
    • ETRI Journal
    • /
    • v.44 no.6
    • /
    • pp.936-944
    • /
    • 2022
  • The mobile network allows redundant transmission via disjoint paths to support high-reliability communication (e.g., ultrareliable and low-latency communications [URLLC]). Although redundant transmission can improve communication reliability, it also increases network costs (e.g., traffic and control overhead). In this study, we propose a reliability-guaranteed multipath allocation algorithm (RG-MAA) that allocates appropriate paths by considering the path setup time and dynamicity of the reliability paths. We develop an optimization problem using a constrained Markov decision process (CMDP) to minimize network costs while ensuring the required communication reliability. The evaluation results show that RG-MAA can reduce network costs by up to 30% compared with the scheme that uses all possible paths while ensuring the required communication reliability.

Optimization of Rotor Blade Stacking Line Using Three Different Surrogate Models

  • Jang, Choon-Man;Samad, Abdus;Kim, Kwang-Yong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.10 no.2 s.41
    • /
    • pp.22-31
    • /
    • 2007
  • This paper describes the shape optimization of rotor blade in a transonic axial compressor rotor. Three surrogate models, Kriging, radial basis neural network and response surface methods, are introduced to find optimum blade shape and to compare the characteristics of object function at each optimal design condition. Blade sweep, lean and skew are considered as design variables and adiabatic efficiency is selected as an objective function. Throughout the shape optimization of the compressor rotor, the predicted adiabatic efficiency has almost same value for three surrogate models. Among the three design variables, a blade sweep is the most sensitive on the object function. It is noted that the blade swept to backward and skewed to the blade pressure side is more effective to increase the adiabatic efficiency in the axial compressor Flow characteristics of an optimum blade are also compared with the results of reference blade.

Recovering Incomplete Data using Tucker Model for Tensor with Low-n-rank

  • Thieu, Thao Nguyen;Yang, Hyung-Jeong;Vu, Tien Duong;Kim, Sun-Hee
    • International Journal of Contents
    • /
    • v.12 no.3
    • /
    • pp.22-28
    • /
    • 2016
  • Tensor with missing or incomplete values is a ubiquitous problem in various fields such as biomedical signal processing, image processing, and social network analysis. In this paper, we considered how to reconstruct a dataset with missing values by using tensor form which is called tensor completion process. We applied Tucker factorization to solve tensor completion which was built base on optimization problem. We formulated the optimization objective function using components of Tucker model after decomposing. The weighted least square matric contained only known values of the tensor with low rank in its modes. A first order optimization method, namely Nonlinear Conjugated Gradient, was applied to solve the optimization problem. We demonstrated the effectiveness of the proposed method in EEG signals with about 70% missing entries compared to other algorithms. The relative error was proposed to compare the difference between original tensor and the process output.

Chaotic Search Algorithm for Network Reconfiguration in Distribution Systems (배전계통 최적구성을 위한 카오스 탐색법 응용)

  • Rhee, Sang-Bong;Kim, Kyu-Ho;You, Seok-Ku
    • Proceedings of the KIEE Conference
    • /
    • 2002.07a
    • /
    • pp.121-123
    • /
    • 2002
  • In this paper, we preposed a chaos optimization method to reduce computational effort and enhance optimality of the solution in feeder reconfiguration problem. Chaos method in optimization problem searches the global optimal solution on the regularity of chaotic motions and more easily escapes from local or near optimal solution than stochastic optimization algorithms. The chaos optimization method is tested on 15 buses and 32 buses distribution systems, and the test results indicate that it is able to determine appropriate switching options for global optimum configuration with less computation.

  • PDF