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ABSTRACT 
 

Tensor with missing or incomplete values is a ubiquitous problem in various fields such as biomedical signal processing, image 
processing, and social network analysis. In this paper, we considered how to reconstruct a dataset with missing values by using 
tensor form which is called tensor completion process. We applied Tucker factorization to solve tensor completion which was built 
base on optimization problem. We formulated the optimization objective function using components of Tucker model after 
decomposing. The weighted least square matric contained only known values of the tensor with low rank in its modes. A first order 
optimization method, namely Nonlinear Conjugated Gradient, was applied to solve the optimization problem. We demonstrated the 
effectiveness of the proposed method in EEG signals with about 70% missing entries compared to other algorithms. The relative 
error was proposed to compare the difference between original tensor and the process output. 
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1. INTRODUCTION 
 

 A tensor is studied as a definition of a data in multi-
dimensional space. It may be regarded as the higher generation 
of vector and matrix. More formally, an N-way or Nth-order 
tensor is an element of the tensor product of N vector spaces 
[1]. Tensor analysis is an approach that has many applications 
in various fields such as physics, mechanics, and information 
sciences. Tensor Completion and Tensor Decomposition are 
two most important application models of tensor [2], [3]. 
Tensor Decomposition is used to divide a tensor into many 
smaller parts but still contain the vital information of the 
original tensor, so that the process will become faster and 
simpler. Tensor Completion is a method to recover missing 
data of a tensor. As mathematical definition, tensor completion 
methods can reconstruct a tensor from a smaller part of its 
entries. 

In recent years, recovering a tensor with missing entries is 
an open problem, especially tensor with low rank in its mode. 
The main idea of low rank was first introduced to solve the 
problems related to the lost information in a matrix that has low 
rank [4]. Lost information or also called “missing values” 
usually occurs when collecting data as recording signals, taking 
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a picture in a bad condition or when transforming data from the 
raw form into the more logical structure. Generally, for more 
understandable, low-rank matrix completion is a method that 
can recover a matrix from a subset of its entries. Low-rank 
matrix is a very useful method for signal processing, computer 
vision [2], biomedical and various other areas [5]-[8]. However, 
a real dataset is presented not only in second-order form as a 
matrix but also in higher-order form as a tensor. Therefore, 
recovery multidimensional missing data or low-rank tensor 
completion is being focused on studying more and more 
commonly. 

The minimization problem of low-n-rank tensor recovery 
is a difficult non-convex problem, because rank is nonconvex 
[5]. Therefore, Nuclear Norm Approximation (NNA) is 
approached to relax low-n-rank tensor completion problem into 
the convex problem. NNA is applied by replacing the rank 
function of tensor with nuclear norm. Therefore, the tensor 
completion problem become convexity and we can solve it 
easier than former non-convex one. Based on this idea, most of 
previous approaches related to tensor completion used NNA for 
their studies. The idea of NNA is to compute the sum of 
singular values of that matrix. NNA promotes a low-rank 
solution, which is a key idea that can be applied to many 
applications such as recommender system, dimension reduction 
in multivariate regression, and multi-task learning [2]. 
Generally, tensor completion is developed based on 
optimization idea: minimizing or maximizing a function to 
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obtain the optimal solution. The optimal solution of the 
optimization problem is the reconstructed tensor.  

In this paper, we applied Tensor Completion on missing 
values in EEG signals. In detail, we propose a method using 
Tucker factorization for recovering lost EEG data. First, we use 
Tucker factorization to build an objective function for the 
optimization problem. Then, we apply Nonlinear Conjugate 
Gradient algorithm [9] to find the optimal solution for the 
reconstructed EEG signals.  

Our contributions are summarized as: (i) we build a 
method for Tucker factorization of missing data by using the 
weight least square function, (ii) the proposed method applied 
successfully not only on element-missing level but also 
channel-missing level. (iii) We proposed to use approximately 
true rank of tensor, by rank of matricization form along to each 
dimension, in order to relax unknown true rank constraint, 
which is an important constraint in non-convex methods such 
as Tucker decomposition. Our work is also the first attempt on 
element-missing level in EEG data and shows high efficiency 
with relative error less than 5%. On both levels of missing 
entries, the proposed method provides the best performance in 
the aspect of accuracy when comparing it to the other methods 
in literature. 

The rest of this paper is organized as follows. Section 2 
briefly reviews the related works. Section 3 introduces the 
proposed method. Experimental results are shown in Section 4 
to demonstrate the performance of the proposed algorithm and 
the final conclusions are presented in Section 5. 

 
 

2. RELATED WORK 
 

Tensor completion is an extension of matrix completion 
which is usually used to recover data in a matrix form. Matrix 
which has low rank becomes the subject for simple recovery 
[7], [8]. Low-rank matrix completion arises in many 
experiments because it can recover a matrix from several 
known entries. The development of processing and storage data 
techniques has led to multidimensional forms of data, so we 
need recovery techniques on higher level, rather than matrix, to 
deal with multidimensional data, preferably formed as tensor. 
Therefore, many literatures have been investigating tensor 
recovery, and applied tensor completion widely in areas such as 
mathematical modelling, data compression, image recovering 
[5], [6], [10]-[12]. Fig. 1 shows an example of a third-order 
tensor with missing entries. 

 

 
Fig. 1. A third-order tensor with missing entries 

 

The optimization problem is non-convex since function 
rank is non-convex. Therefore, trace norm is used to 
approximate rank of matrices, aims to relax the object function 
to convex optimization problem. In essence, the trace norm of a 
tensor is a convex combination of the trace norms of all 
matrices unfolded along each mode.  

Similar approaches were used in Gandy [5] and Tan [6], 
Liu et al. [11] showed that the above problem still hard to solve 
because the matrix nuclear norm terms are interdependent. 
Therefore, Liu et al. [11] proposed three algorithms to tackle 
this problem, namely SiLRTC, FaLRTC and HaLRTC.  

The SiLRTC algorithm employs a relaxation technique to 
separate the dependent relationships and uses the block 
coordinate descent (BCD) method to achieve a globally optimal 
solution. The SiLRCT is simple and can be adjusted trade-off 
between running time and accuracy through turning of a 
parameter theta. The FaLRTC algorithm utilizes a smoothing 
scheme to transform the original non-smooth problem into a 
smooth problem. The HaLRTC algorithm applies the 
alternating direction method of multipliers (ADMM) [13]. 
These three methods are more accurate and robust than 
heuristic approaches such as Tucker, PARAFAC and SVD. The 
FaLRTC and HaLRTC are more significantly efficient than 
SiLRTC about running time, when they have same accuracy. 
FaLRTC is more efficient to a low accuracy solution and 
HaLRTC is preferred if a high accuracy solution is desired. 

However, there are some problems with these approaches. 
Generally, NNA is the sum of singular values of a matrix. 
Therefore, when applying these approaches, every iteration of 
the SVD needs to be computed. This makes these algorithms 
slower and the complexity of problem will be increased. In 
addition, these methods were just proven effectively in graphic, 
video processing and reflected data, no guarantee that they 
might be good for EEG recovery. 

Acar et al. [10] also built a model to recover a low rank 
tensor of EEG with missing data but using different approach 
to recover a low rank tensor with missing values to avoid using 
SVD. In [10], an objective function formed from the 
components is proposed after PARAFAC decomposing and its 
weight least matrix which just contains 0 and 1. The value of 
this matrix is 1 if it is known values. Otherwise, it is 0. The 
objective function used in their paper for third-order tensor is 
sum of squares error between initial tensor and reconstructed 
elements built from factor matrices after CANDECOMP/ 
PARAFAC decomposition. 

In fact, Tucker Decomposition and PARAFAC are two 
major tensor decomposition methods [12]. As in [3], Tucker is 
considered as a more flexible model than PARAFAC. 
Therefore, based on Tucker’s studies, Marko [12] developed 
another method for recovering a tensor. He mentioned that his 
proposed method can recover underlying low-n-rank tensor 
even when the true tensor ranks are unknown. His approach 
required an assumption that tensor has low-rank on every mode. 
When true rank is overestimated, Marko's method provided an 
accurate reconstructed tensor, and it demonstrated on some 
stimulation datasets, 3D images and protein dataset. However, 
one problem is overestimated rank setting not same on his 
experiments and if estimated rank is assumed equal to full rank, 
his proposed method became worse much than nuclear norm 
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computed based on an objective function and its gradient [13]. 
As the definition of Tucker decomposition, when decomposing 
a tensor in Թ୬, we will obtain a core tensor and some factor 
matrices along to each mode. However, in reality, the result of 
the mode-n product of the core tensor and ݊ factor matrices is 
not same as the original tensor, just an approximate 
reconstructed tensor. This difference between reconstructed 
tensor and initial tensor is formed as an “error tensor”. 

The N -way objective function for the optimization 
problem is defined by Marko [12] as (7). 
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The gradient can be obtained by computing the partial 

derivatives of objective function fࣱ to each element of the 
core tensor and the factor matrices after decomposing. The 
gradient equation can be rewritten in the matrix notation case 
as follows: 
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Gradient of the objective function on the core tensor is: 
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In this paper, we used Nonlinear Conjugate Gradient 
(NCG) because of its speed. For applying NCG method for our 
problem, we used Poblano Toolbox [14].  

We proposed a method to recover a tensor with low rank 
in its mode by using Tucker model and a first-order 
optimization problem. The outputs of Tucker model will be 
combined with a least square matrix to form the objective 
function for the optimization problem. The output of the 
optimization problem is the recovery of the tensor with missing 
entries.  

 
 

4. EXPERIMENTS 
 
In this paper, we conducted experiments on two datasets. 

The first experiment is done with element-missing level on 
epilepsy dataset of four dogs and the other one is done with 

channel (or fiber)-missing level on a EEG dataset collected 
from a stimulation experiment on human. 

 
4.1 Experiment on element-missing level data 

In this experiment, we use an EEG dataset recorded from 
four dogs with naturally occurring epilepsy using an 
ambulatory monitoring system. The recording process was 
acquired on 16 channels. Data are recorded continuously at a 
sampling frequency of 400 Hz and referenced to the group 
average. This data set is open freely at the International 
Epilepsy Electrophysiology portal and was developed by the 
University of Pennsylvania and the Mayo Clinic [15]. 

The dataset will be set into a tensor of size 16×400×200 as 
channel × time-point × segments for each subject. Each 
segment is the signals recorded in one second. In this paper, 
200 segments recorded in 200 first seconds are used. The low-
n-rank of this tensor is 15×213×200 computed by equation (2). 

The relative error will be estimated for determining the 
difference of the original data and recovered data by this 
formula: 
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Where ढ෡  denotes the output of the proposed method, and 

ढ denotes the original tensor with low rank in each mode. The 
relative error is always nonnegative and the best possible value 
is 0. The core and factor matrices are initialized by Tucker 
algorithm in N-way Toolbox [16]. 

The results of proposed method are shown in Table 2. This 
table displays the results of the relative error of two tensors: the 
original tensor and the output of the proposed method. This 
error is computed from equation (10). The rank of core tensor 
is 15×213×200 as the low feasible rank of this tensor. The 
obtained results of four dogs are approximately less than 4% 
error. In other words, the similarity of the original tensor and its 
reconstruction using Tucker model is about 96%. 

 
Table 2. The relative error of proposed method in different 
fractions of missing data 

Missing 
data Dog 1 Dog 2 Dog 3 Dog 4 

30% 1.2% 1.69% 1.59% 1.85%
50% 1.76% 3.3% 1.59% 3.34%
70% 1.49% 4% 2.88% 3.5%

 
As an example of the original signals of the first dog, its 

missing versions and the recovered signals are shown in Fig. 3: 
fig. (a) shows the first EEG segment with 70% of missing 
values of Dog 1 and fig. 3.(b) is the recovery of (a). These 
figures show that the proposed method can successfully recover 
a signal with up to 70% missing values. 

In this experiment, we also compare the effectiveness of 
the proposed method with the others that are from Ji Liu’s 
paper [11]. Simple low-rank tensor completion (SiLRTC) is 
used as an optimization method that can be applied to a simple 
convex structure which can be solved by block coordinate 
descent. A faster version of SiLRTC is also proposed as 
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another comparison method, called FaLRTC. This method uses 
the smooth model of the convex problem to solve. 

The comparison of the proposed method and two Ji Liu’s 
methods is showed in Fig. 4 with average related errors of four 
dogs.  

 

 
(a) 

 
(b) 

Fig. 3. The EEG segment of Dog 1 
 

 
Fig. 4. Comparison of the proposed method and the others 

 
This result shows the big difference output between these 

methods. These scores are computed by the relative errors for 
the whole tensor. The relative errors computed after applying 
SiLRTC and FaLRTC are close to 50%. It also shows that these 
two methods not good when applying for EEG data. We think 

that these high errors occurred since the natural characteristics 
of continuous elements in EEG data absolutely different to 3-D 
graphic data. In EEG, the correlation of a point along to each 
mode (dimension) is majority, differ to the correlation of 
neighbor pixels (multi-dimension) as in 3-D space of graphic 
data. 

We also studied the effect of this method in the case of 
some channels are disconnected. This is one of the reasons why 
the EEG data is lost information when collecting. To study 
tensor completion for this case, we remove one or more of 
channels of each segment. Fig. 4 shows the example results of 
Dog 3 for this case. Four channels: 3, 8, 10 and 16 are 
randomly removed. The detail scores are represented in Table 3. 
The proposed method still works well even though being 
removed a half of channels, means about 50% entries is lost. 

 
Table 3. Relative error after removing some channels 
Number of Removed 

Channels Dog 1 Dog 2 Dog 3 Dog 4

1 0.0069 0.001 0.0078 0.035
4 0.0055 0.0089 0.007 0.026
8 0.0044 0.0049 0.0054 0.017

 
4.2 Experiment on fiber-missing level data 

For the second experiment, we used same EEG dataset as 
Acar [11] for comparison. This dataset contains 64 channels 
recorded from 14 subjects during stimulation of left and right 
hand. Therefore, each measurement is arranged as a channel by 
frequency by time, which is 3D form of size 64×61×72. Time 
and frequency will be vectorized of length 4392 (i.e. 61×72); in 
other words, each measurement is represented by a channel by 
time-frequency matrix. Therefore, whole dataset was arranged 
as a channel by time-frequency by measurements tensor of size 
64×4392×28. 

 
(a) 
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(b) 

Fig. 5. Reconstruction of signals of Dog 3 after removing four 
channels: 3, 8, 10, 16. (a) original data before removing 

channels. (b) the output after applying the proposed method 
 
The rank of this tensor computed by equation (2) is 

64×71×28 [17]. Following Acar’s paper [11], EEG analysis is 
easily lost information because one or some of channels are 
disconnected. This corresponds to the missing fibers in a tensor. 
To reflect such cases of missing data, Acar set randomly data 
for one or some of the current channels for each measurement 
to be missing, and then the PARAFAC model was applied to 
the above low rank to obtain the results of the proposed method. 
Same as Acar’s work, we also randomly remove one channel or 
more of 64 channels (1, 10, 20 respectively) for each 
measurement of the whole dataset. Fig. 5 illustrate 
effectiveness of proposed method when applying for tensor 
missing four channels. It shows EEG data before and after 
recovering. 

Relative errors compared to Acar’s method are showed in 
Table 4. The error between two tensors: the original tensor and 
the reconstructed tensor is computed by formula (10). This 
experiment shows that the proposed method still give better 
results than Acar’s method if removing 20 channels, i.e. about 
30% entries of the data. This result also demonstrates 
remarkable improvement about performance of Tucker 
compared to PARAFAC. 

 
Table 4. The comparison of the relative error between the 
proposed method and Acar’s method 
Number of missing 

channels 
The proposed 

method 
Acar’s 
method 

1 1.19e െ 4 0.0009
10 1.53e െ 4 0.0065
20 0.0137 0.1656

 
 

5. CONCLUSION 
 

The aim of this paper is to focus on the problem of low-
rank tensor completion used to reconstruct a tensor based on a 
subset of its entries. This approach is applied to recover 
missing values of the dataset in multidimensionality. By using 

Tucker model and its weight function for known entries, we 
can form an objective function for the optimization problem. 
The first-order optimization, Nonlinear Conjugate Gradient, is 
applied to solve the weighted least squares objective function 
because its speed and simplification. This paper also shows that 
an EEG signals in tensor form has sufficiently low-n-rank can 
be recovered exactly from a subset of its entries, about 70% 
missing entries, with less than 4% relative error. We also show 
the applicability of the proposed method on different datasets. 

In the future work, we will research deeper about 
applications of non-convex methods in other areas besides EEG 
and graphic data. And we want to extend current work to 
include some constraints on factors in the model, such as 
orthogonality or non-negativity. 
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