• Title/Summary/Keyword: network optimization

Search Result 2,239, Processing Time 0.032 seconds

A Novel Service Migration Method Based on Content Caching and Network Condition Awareness in Ultra-Dense Networks

  • Zhou, Chenjun;Zhu, Xiaorong;Zhu, Hongbo;Zhao, Su
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.6
    • /
    • pp.2680-2696
    • /
    • 2018
  • The collaborative content caching system is an effective solution developed in recent years to reduce transmission delay and network traffic. In order to decrease the service end-to-end transmission delay for future 5G ultra-dense networks (UDN), this paper proposes a novel service migration method that can guarantee the continuity of service and simultaneously reduce the traffic flow in the network. In this paper, we propose a service migration optimization model that minimizes the cumulative transmission delay within the constraints of quality of service (QoS) guarantee and network condition. Subsequently, we propose an improved firefly algorithm to solve this optimization problem. Simulation results show that compared to traditional collaborative content caching schemes, the proposed algorithm can significantly decrease transmission delay and network traffic flow.

Design of Fuzzy Relation-based Fuzzy Neural Networks with Multi-Output and Its Optimization (다중 출력을 가지는 퍼지 관계 기반 퍼지뉴럴네트워크 설계 및 최적화)

  • Park, Keon-Jun;Kim, Hyun-Ki;Oh, Sung-Kwun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.4
    • /
    • pp.832-839
    • /
    • 2009
  • In this paper, we introduce an design of fuzzy relation-based fuzzy neural networks with multi-output. Fuzzy relation-based fuzzy neural networks comprise the network structure generated by dividing the entire input space. The premise part of the fuzzy rules of the network reflects the relation of the division space for the entire input space and the consequent part of the fuzzy rules expresses three types of polynomial functions such as constant, linear, and modified quadratic. For the multi-output structure the neurons in the output layer were connected with connection weights. The learning of fuzzy neural networks is realized by adjusting connections of the neurons both in the consequent part of the fuzzy rules and in the output layer, and it follows a back-propagation algorithm. In addition, in order to optimize the network, the parameters of the network such as apexes of membership functions, learning rate and momentum coefficient are automatically optimized by using real-coded genetic algorithm. Two examples are included to evaluate the performance of the proposed network.

A Pivot And Probe Algorithm(PARA) for Network Optimization

  • Moonsig Kang;Kim, Young-Moon
    • Korean Management Science Review
    • /
    • v.15 no.1
    • /
    • pp.1-12
    • /
    • 1998
  • This paper discusses a new algorithm, the PAPANET (Pivot And Probe Algorithm for NETwork optimization), for solving linear, capacitated linear network flow problem (NPs), PAPANET is a variation and specialization of the Pivot And Probe Algorithm (PAPA) developed by Sethi and Thompson, published in 1983-1984. PAPANET first solves an initial relaxed NP (RNP) with all the nodes from the original problem and a limited set of arcs (possibly all the artificial and slack arcs). From the arcs not considered in the current relaxation, we PROBE to identify candidate arcs that violate the current solution's dual constraints maximally. Candidate arcs are added to the RNP, and this new RNP is solved to optimality. This candidate pricing procedure and pivoting continue until all the candidate arcs price unfavorably and all of the dual constraints corresponding to the other, so-called noncandidate arcs, are satisfied. The implementation of PAPANET requires significantly fewer arcs and less solution CPU time than is required by the standard network simplex method implementation upon which it is based. Computational tests on randomly generated NPs indicate that our PAPANET implementation requires up to 40-50% fewer pivots and 30-40% less solution CPU time than is required by the comparable standard network simplex implementation from which it is derived.

  • PDF

A New Optimization Model for Designing Broadband Convergence Network Access Networks

  • Lee Young-Ho;Jung Jin-Mo;Kim Young-Jin;Lee Sun-Suk;Park No-Ik;Kang Kuk-Chang
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2006.05a
    • /
    • pp.1616-1640
    • /
    • 2006
  • In this paper, we deal with a network optimization problem arising from the deployment of Ethernet-based BcN access network. BcN convergence services require that access networks satisfy QoS measures. BcN services have two types of traffics: stream traffic and elastic traffic. Stream traffic uses blocking probability as a QoS measure, while elastic traffic uses delay factor as a QoS measure. Incorporating the QoS requirements, we formulate the problem as a nonlinear mixed-integer programming model. The proposed model seeks to find a minimum cost dimensioning solution, while satisfying the QoS requirement. We propose tabu search heuristic algorithms for solving the problem, and simulate tabu result. We demonstrate the computational efficacy of the proposed algorithm by solving a network design problem.

  • PDF

Optimal Design of Multiperiod Process-Inventory Network Considering Transportation Processes (수송공정을 고려한 다분기 공정-저장조 망구조의 최적설계)

  • Suh, Kuen-Hack;Yi, Gyeong-Beom
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.9
    • /
    • pp.854-862
    • /
    • 2012
  • The optimal design of batch-storage network by using periodic square wave model provides analytical lot sizing equations for a complex supply chain network characterized as multi-supplier, multi-product, multi-stage, non-serial, multi-customer, cyclic system including recycling and/or remanufacturing. The network structure includes multiple currency flows as well as material flows. The processes are represented by multiple feedstock/product materials with fixed composition which are very suitable for production processes. In this study, transportation processes that carry multiple materials with unknown composition are added and the time frame is changed from single period into multiple periods in order to represent nonperiodic parameter variations. The objective function of the optimization involves minimizing the opportunity costs of annualized capital investments and currency/material inventories minus the benefit to stockholders in the numeraire currency. The expressions for the Kuhn-Tucker conditions of the optimization problem are reduced to a multiperiod subproblem for average flow rates and analytical lot-sizing equations. The multiperiod lot sizing equations are different from single period ones. The effects of corporate income taxes, interest rates and exchange rates are incorporated.

Structure optimization of neural network using co-evolution (공진화를 이용한 신경회로망의 구조 최적화)

  • 전효병;김대준;심귀보
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.35S no.4
    • /
    • pp.67-75
    • /
    • 1998
  • In general, Evoluationary Algorithm(EAs) are refered to as methods of population-based optimization. And EAs are considered as very efficient methods of optimal sytem design because they can provice much opportunity for obtaining the global optimal solution. This paper presents a co-evolution scheme of artifical neural networks, which has two different, still cooperatively working, populations, called as a host popuation and a parasite population, respectively. Using the conventional generatic algorithm the host population is evolved in the given environment, and the parastie population composed of schemata is evolved to find useful schema for the host population. the structure of artificial neural network is a diagonal recurrent neural netork which has self-feedback loops only in its hidden nodes. To find optimal neural networks we should take into account the structure of the neural network as well as the adaptive parameters, weight of neurons. So we use the genetic algorithm that searches the structure of the neural network by the co-evolution mechanism, and for the weights learning we adopted the evolutionary stategies. As a results of co-evolution we will find the optimal structure of the neural network in a short time with a small population. The validity and effectiveness of the proposed method are inspected by applying it to the stabilization and position control of the invered-pendulum system. And we will show that the result of co-evolution is better than that of the conventioal genetic algorithm.

  • PDF

Power Allocation in Heterogeneous Networks: Limited Spectrum-Sensing Ability and Combined Protection

  • Ma, Yuehuai;Xu, Youyun;Zhang, Dongmei
    • Journal of Communications and Networks
    • /
    • v.13 no.4
    • /
    • pp.360-366
    • /
    • 2011
  • In this paper, we investigate the problem of power allocation in a heterogeneous network that is composed of a pair of cognitive users (CUs) and an infrastructure-based primary network. Since CUs have only limited effective spectrum-sensing ability and primary users (PUs) are not active all the time in all locations and licensed bands, we set up a new multi-area model to characterize the heterogeneous network. A novel combined interference-avoidance policy corresponding to different PU-appearance situations is introduced to protect the primary network from unacceptable disturbance and to increase the spectrum secondary-reuse efficiency. We use dual decomposition to transform the original power allocation problem into a two-layer optimization problem. We propose a low-complexity joint power-optimizing method to maximize the transmission rate between CUs, taking into account both the individual power-transmission constraints and the combined interference power constraint of the PUs. Numerical results show that for various values of the system parameters, the proposed joint optimization method with combined PU protection is significantly better than the opportunistic spectrum access mode and other heuristic approaches.

Development of An Optimal Routes Selection Model Considering Price Characteristics of Agricultural Products (농산물의 가격특성을 고려한 최적경로 선정모델 개발)

  • Suh, Kyo;Lee, Jeong-Jae;Huh, Yoo-Man;Kim, Han-Joong;Yi, Ho-Jae
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.46 no.1
    • /
    • pp.121-131
    • /
    • 2004
  • Transportation and logistics of agricultural products have been one of the major interests of many researches. Most of researches have been limited to presuming these as a first dimensional process or considering only economic value of agricultural products at each stage of logistics. However, the particular characteristics of agricultural products, such as quality change during transportation or extensively scattered origins, require examining these problems as a whole system. Network model has been adopted to represent nodes, which stand for spatial location of demand and supply of agricultural products, and communication between these nodes. Based on network theory and advanced marketing potential function, an optimal routes selection model is developed. The model employed network simplex method for routes optimization. The application of the model focused on transportation network organization to reflect different market prices for different locations and resulted in optimum routes and profit improvement of the applied agricultural product.

Real-time Camera and Video Streaming Through Optimized Settings of Ethernet AVB in Vehicle Network System

  • An, Byoungman;Kim, Youngseop
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.8
    • /
    • pp.3025-3047
    • /
    • 2021
  • This paper presents the latest Ethernet standardization of in-vehicle network and the future trends of automotive Ethernet technology. The proposed system provides design and optimization algorithms for automotive networking technology related to AVB (Audio Video Bridge) technology. We present a design of in-vehicle network system as well as the optimization of AVB for automotive. A proposal of Reduced Latency of Machine to Machine (RLMM) plays an outstanding role in reducing the latency among devices. RLMM's approach to real-world experimental cases indicates a reduction in latency of around 41.2%. The setup optimized for the automotive network environment is expected to significantly reduce the time in the development and design process. The results obtained in the study of image transmission latency are trustworthy because average values were collected over a long period of time. It is necessary to analyze a latency between multimedia devices within limited time which will be of considerable benefit to the industry. Furthermore, the proposed reliable camera and video streaming through optimized AVB device settings would provide a high level of support in the real-time comprehension and analysis of images with AI (Artificial Intelligence) algorithms in autonomous driving.

Prediction of aerodynamic coefficients of streamlined bridge decks using artificial neural network based on CFD dataset

  • Severin Tinmitonde;Xuhui He;Lei Yan;Cunming Ma;Haizhu Xiao
    • Wind and Structures
    • /
    • v.36 no.6
    • /
    • pp.423-434
    • /
    • 2023
  • Aerodynamic force coefficients are generally obtained from traditional wind tunnel tests or computational fluid dynamics (CFD). Unfortunately, the techniques mentioned above can sometimes be cumbersome because of the cost involved, such as the computational cost and the use of heavy equipment, to name only two examples. This study proposed to build a deep neural network model to predict the aerodynamic force coefficients based on data collected from CFD simulations to overcome these drawbacks. Therefore, a series of CFD simulations were conducted using different geometric parameters to obtain the aerodynamic force coefficients, validated with wind tunnel tests. The results obtained from CFD simulations were used to create a dataset to train a multilayer perceptron artificial neural network (ANN) model. The models were obtained using three optimization algorithms: scaled conjugate gradient (SCG), Bayesian regularization (BR), and Levenberg-Marquardt algorithms (LM). Furthermore, the performance of each neural network was verified using two performance metrics, including the mean square error and the R-squared coefficient of determination. Finally, the ANN model proved to be highly accurate in predicting the force coefficients of similar bridge sections, thus circumventing the computational burden associated with CFD simulation and the cost of traditional wind tunnel tests.