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Power Allocation in Heterogeneous Networks: Limited
Spectrum-Sensing Ability and Combined Protection

Yuehuai Ma, Youyun Xu, and Dongmei Zhang

Abstract: In this paper, we investigate the problem of power alloca-
tion in a heterogeneous network that is composed of a pair of cog-
nitive users (CUs) and an infrastructure-based primary network.
Since CUs have only limited effective spectrum-sensing ability and
primary users (PUs) are not active all the time in all locations
and licensed bands, we set up a new multi-area model to charac-
terize the heterogeneous network. A novel combined interference-
avoidance policy corresponding to different PU-appearance situ-
ations is introduced to protect the primary network from unac-
ceptable disturbance and to increase the spectrum secondary-reuse
efficiency. We use dual decomposition to transform the original
power allocation problem into a two-layer optimization problem.
We propose a low-complexity joint power-optimizing method to
maximize the transmission rate between CUs, taking into account
both the individual power-transmission constraints and the com-
bined interference power constraint of the PUs. Numerical results
show that for various values of the system parameters, the pro-
posed joint optimization method with combined PU protection is
significantly better than the opportunistic spectrum access mode
and other heuristic approaches.

Index Terms: Cognitive radio, combined protection, heterogeneous
network, power allocation, spectrum sensing.

I. INTRODUCTION

Cognitive radio has been recently suggested as a solution
for more efficient spectrum utilization through the principles of
spectrum sensing and dynamic spectrum access [1]. In hetero-
geneous networks that are composed of cognitive systems and
primary networks, how to appropriately control or allocate the
power of the cognitive users (CUs) to obtain high spectrum-
reuse efficiency, under the condition that the primary users
(PUs) are not unduly interfered with, is definitely one of the
important research issues [2].

At present, there are generally two PU protection models
(modes) for operating dynamic spectrum access. The first is
spectrum sharing (SS) 2], [3], in which CUs can transmit data
even when PUs are present, provided the interference with the
PUs caused by the secondary transmission is below a predefined
threshold. The second is opportunistic spectrum access (OSA)
[41, [5], i.e., CUs are allowed to use a certain band only when
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it is not occupied by any PUs (this is a spectrum hole). Power
allocation under both these models has attracted much research
interest. Kang et al. [6] research the optimal power allocation
with different channel-fading statistics to achieve ergodic ca-
pacity and outage capacity in SS mode. Le et al. [7] present
a framework to operate admission control and power alloca-
tion. In the literature, the SS model is also called the spectrum
underlay [8]. Using the OSA model, Zhao et al. [9] propose
a decentralized cognitive MAC protocol considering both the
channel-availability decision process and the power allocation
process. See [10}-[12] (for SS) and [13]-[15] (for OSA) for a
broader overview of the state-of-the-art of cognitive power al-
location. However, both OSA and SS have weaknesses. OSA
requires the spectrum-sensing module of the cognitive system
to perfectly sense PUs in the entire band of interest. This is dif-
ficult to achieve over the entire service area of the primary net-
work, because of the different scale fading of the wireless chan-
nels and the limited sensing ability of the radio hardware. More-
over, the policy allowing orthogonal transmission prevents the
OSA mode from further increasing the spectrum-utilization ef-
ficiency. On the other hand, although the 8S mode provides an
interference-avoidance mechanism when CUSs coexist with PUs,
it does not include a power-control policy for using the spectrum
holes. In practice, because of various factors such as the hidden
terminal problems [16] caused by imperfect sensing, or energy
leakage on adjacent channels [17], the transmission power of
CUs is constrained by not only the individual maximum power
budgets but also other interference limitations.

In this paper, we focus on the power allocation for the rate
maximization between CUs, considering the practical condi-
tions that CUs have a limited effective sensing area, and PUs
appear with some probability in service areas as well as li-
censed bands. We set up a multi-area model to characterize
the heterogeneous network. We also develop a novel com-
bined interference-avoidance policy corresponding to different
PU-appearance situations to protect the primary network from
unacceptable disturbance. By using dual decomposition, we
transform the original power allocation problem into a two-
layer optimization problem. We propose a low-complexity joint
power-optimizing method taking into account both the individ-
val power-transmission constraints of the CUs and the combined
interference power constraint of the PUs. We note that in [18],
the authors use a similar but considerably simpler protection
idea to define the “power mask” of each subchannel. However,
the power mask does not consider interference channel fading
influences from CUs to PUs and is applied for totally different
sensing models. To the best of our knowledge, we are the first to
study power allocation for heterogeneous networks considering
both the limited spectrum-sensing area and combined protec-
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Fig. 1. Multi-area-based system model of heterogeneous network.

tion.

The rest of the paper is organized as follows. Section II
presents the system model and the combined PU-protection
principle. The joint optimizing power allocation method is dis-
cussed in Section III. Section IV gives numerical examples and
a performance analysis. Finally, Section V provides concluding
remarks.

II. SYSTEM MODEL AND COMBINED PROTECTION
SCHEME

A. System Model

The system model is depicted in Fig. 1. This scenario is com-
patible with the IEEE 802.22 wireless regional area network
(WRAN) standard [19]. The infrastructure of the primary net-
work operating in the very high frequency (VHF)/ultra high
frequency (UHF) bands consists of the primary base station
(PBS) and PUs that are TV users or wireless microphones.
The cognitive system consists of a pair of CUs that pursue
point-to-point data transmissions as decided by higher-level net-
work protocols. We assume that the currently transmitting CUs
are cognitive transceivers (CU-transmitter (Tx) and CU-receiver
(Rx)). The total bandwidth B of the network is divided into N
independent subbands'. According to the sensing ability and in-
terference range of the CUs [20], the network can be divided
into three areas. As can be seen from Fig. 1, area 1 is the ef-
fective spectrum-sensing area in which the CUs have perfect
ability to sense the subchannel occupancy results of the PUs.
We assume that area 1 is a circle centered at CU-Tx with a ra-
dius of d. We further assume that the distance between the CU
transceivers is much smaller than the radius. Area 2 is defined
to be the CU’s potential interference area, outside of which the
interference with the PUs can be considered negligible because
of the attenuation of unlicensed signals. Finally, area 3 is the
service area of the PBS; the coverage range is not influenced by
the cognitive system but depends on the fixed primary-network
infrastructure?.

In this paper, we adopt the symbol structure of {21], which is

I Throughout this paper, we use the concept of subband and subchannel inter-
changeably.

2We note that in the network model area 2 contains area 1, and area 3 contains
area 2.

also compatible with the IEEE 802.22 standard, and assume that
the heterogeneous network has perfect synchronization. Each
PU occupies at most one subband with a probability of ()4 in ev-
ery symbol to communicate with the PBS. The occupancy status
may change only at the beginning of each symbol.

B. Combined PU-Protection Scheme

In the spectrum-sensing phase, if the CUs sense that there
is a PU in a certain subband, say n, in area 1, then the CU-
transmission power p,, on that subchannel must satisfy

Pngn < PV (1)

where g,, is the channel power gain from CU-Tx to the PU, and
Pt(; ) is the maximum tolerable interference-power threshold of
the PU. We assume that the CU can obtain knowledge of g,, and
Pt(; ) [71, [11], and the thresholds for all PUs on every subchan-
nel are equal. On the other hand, since the CUs do not know if
there are any PUs in area 2, when the CUs do not sense a PU on
subchannel n in area 1, p,, must satisfy

pud™ < P )

i.e., the radiation power on the edge of area 1 should be be-
low the PUs’ interference-power threshold, where « is the path-
attenuation factor.

Given the different occupancy realizations of the PUs on ev-
ery subchannel, we can divide the subchannels into two sets.
Specifically, let £2; be the channel set whose elements represent
the subchannels that have not sensed any PUs in area 1, and (-
be the set whose elements are the subchannels that have sensed
PUs. Thus, Q; Ny =P and Q; Uy = {1,--+, N}. Leth,, be
the channel power gain between CU-Tx and CU-Rx, and let the
noise at CU-Rx be additive white Gaussian noise (AWGN) with
zero mean and variance ¢2. Moreover, if a PU in area 1 uses
subchannel n, the interference with the CUs can be viewed as
white noise with zero mean and variance ¢2. It is assumed that
the interference from the PUs outside area 1 is negligible (or
can be integrated into the AWGN). Hence, the maximum trans-
mission rate corresponding to the two PU occupancy statuses on
subchannel n is

log, (1 + F(f;—;b%;gj), n € 3
T, puad
" log, (1 + P;(fg), n €y

where I is the signal-to-noise ratio (SNR} gap [22]. With the
MQAM modulation, I' has a simple relationship with bit error
rate (BER); T’ = — In(5BER)/1.5.

ITI. POWER ALLOCATION BASED ON JOINT
OPTIMIZATION

Once the necessary channe! state information (CSI) and PU
occupancy information has been acquired, we focus on how
to appropriately allocate power to different subchannels. The
goal is to maximize the sum-rate between the CUs, while sat-
isfying not only their individual power-transmission budgets but
also the combined interference power protection threshold. Let
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the power allocation vector of the CUs on all subchannels be

P = [p1,p2,- - -, pn]. The problem can be expressed mathemat-
ically as
Problem 1:
P* = arg max Z 10g2 <1+ p’nh’n - >
{Pnlpn20, n€Q1UR} (a1, 2 +02)
+ D log ( pnh")}
n€Q
“)
subject to: Cl:  pogn < P ’ ifn e
C2: n < Pf,,), ifn ey
N
C3 : Z p’ﬂ S Pmax
=]

where Rg ) = g Pt(,: ) and Prax is the maximum power trans-
mission of the CUs.

It can be proved that problem 1 is convex with respect to the
power p,, of each subchannel. However, it is not easy to derive
its closed form because when a subchannel belongs to differ-
ent channel sets it has different maximum rates and constraints.
This also makes it difficult to derive the Lagrangian function
with respect to p,, using the Karush-Kuhn-Tucker (KK T) condi-
tions. However, by observing the characteristics of problem 1
and using dual decomposition theory [23], we can transform
problem 1 into an equivalent form:

Problem 2:

P*= max max > log (1—}- ghn )
2 T2t 2
P, P3| (palpn20, ne} ne, CER

+ max lo ( + Enln ”)
{Pn]p~>0, nEQs} ng)z &2 To?

(5)
subject to: Cl, C2, and
C4: Y pa<PY,
nefl
C5: Z pn < PG
ncy
c6: PL + P2

sSunt sum — max

where J;iln and P(ugn represent the sum-power constraints of
channel sets £2; and 2y, respectively. We can easily prove that
problems 1 and 2 have identical solutions, but we omit the de-
tails for brevity. It can be seen in problem 2 that although con-
straints are added, the PU-appearance situations are totally sep-
arated by the introduction of new variables. Furthermore, we
see that the optimizations of Ps(izn, Pg%@, and {ppn € 4},
{pnln € Q2} are independent of each other. Therefore, simi-
larly to [24], we can treat this as a two-layer optimization prob-
lem. We first optimize the inner layer, which involves the op-
timization of {p,|n € Q:1} and {p,|n € 2} when Ps(izn and
PL2), are fixed. We then optimize the outer layer, which involves
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PS(um and Pb(um, to get the optimal power allocation. Notice that
this hierarchy is similar to that of the classic dual algorithm in
convex optimization theory [25]. We will show that the detailed
technique is different.

Let Py = {p,|Vn € Oy} and Py = {p,[Vn € Q2}. When
the values of Psiuzn and P§§2n are given, the power allocation in
each subchannel set is equivalent to the following two subprob-
lems:

Subproblem 1:
P} = arg max Z log, (1+ Drhn i ) ©
{Pnlpn>0, neM} o0, 2+02)
subject to: ClandC4
Subproblem 2:
/
P; = arg max Z 10g2 (1 + Pn ln) (7)
{pnlpn>0 nEQZ}nEQZ P

subject to: C2 and C5.

Subproblem 1 is a convex problem in {p,|n € Q1 }. It can
be solved by the interior point method or by using a subgradient
method to update the Lagrangian coefficients to minimize the
dual. However, these approaches are computationally complex,
and the interior point method cannot obtain the closed-form so-
lution. To solve subproblem 1 more efficiently, we first present
the optimal solution theorem and then propose a low-complexity
cognitive water-filling algorithm (CW-FA) to find the optimal
solution quickly.

Theorem 1: Let Qf = {n|pngn < Pt{;), n € Q}and QF =

{nlpngn > r h , n € §1}. The sum-rate of subproblem 1 is
maximized for the power allocation:

2. 2y\ T
(8- 257)) , wneop

(1)
E VneOP

Pn = (8)

th
gn ’

where (z)* = max{z,0}, and A; satisfies

[‘ 2+ 2
Z (Al — ﬁ_h_%J)
nEQi4 "

Proof: See the Appendix.

When n € 04!, p, has the same form as the classical water-
filling solution. From Theorem 1 and constraint C1 we see that
we cannot determine whether subchannel n belongs to set Q1
or Q{’ before the value of p, is given. Moreover, it is diffi-
cult to calculate p,, when the subchannel division information
is not fixed. One method to overcome this is to identify all the
subchannel-division combinations over sets Q‘f‘ and O, caicu-
late the power allocation for every combination, and select the
one that maximizes the sum-rate and satisfies all the power con-
straints. Clearly, the high complexity of exhaustive search makes
it prohibitive in practice. We therefore develop an iterative CW-
FA to find the optimal power allocation more efficiently. The

= p

sum

_ Z _‘Pﬁ ©)

neq’f gn



MA et al.: POWER ALLOCATION IN HETEROGENEOUS NETWORKS: LIMITED SPECTRUM-SENSING... 363

Table 1. CW-FA.

Initialization: Define Q£ = {n|¥n € Q1},0 =0, Py = P5.
S1) Taken P, as sum-power constraint, implement water-filling
based power allocation for all the subchannels n € Q‘l‘l to get
Dn, e, pp = (Al —T(e? + og)/hn)+, ne Q’f, where
A1 satisfies: Zneﬂi“ (Ay ~T(c? + ag)/hn)+ = P
§2) For every n € 4%, check whether Pn > Pt(; ) /gn?
If there exists a subchannel n* satisfies the inequality, let
Dpr = Pt%) /Gn*, goto step 3), otherwise, the algorithm is end.
$3) Update: Ot = Q£ /{n*}, P = Pt — P /g,
©=0U{P} /gn}.
S4) Check whether Q‘f‘ =02 orpy < Pt%)/gn? Yn € Qf’,
If either of above condition is satisfied, the algorithm is end;
otherwise, goto step S1)

basic idea of the algorithm is that at each step, we perform clas-
sical water-filling for all the subchannels remaining in set 3. If
the power obtained by water-filling on some channel is beyond
the corresponding interference threshold, we set the power of
the subchannel equal to the threshold, remove the channel from
set 2, and update the sum-power of the set. This process is per-
formed iteratively until the powers on all the channels satisfy the
interference power constraints, or there are no more subchannels
in set 4!, A detailed description is given in Table 1.

In this algorithm, () represents the empty set, and the power
allocation of CW-FA is {p,, |Vn € O} U ©. The complexity
of the classical water-filling algorithm increases linearly with
the number of channels, which is O(|€2;]) here. From the al-
gorithm, it can be seen that in the worst case, the number of
iterations of CW-FA is |);| — 1, so the complexity of CW-FA
is approximately O(|€21 |2). Since the complexity of the exhaus-
tive search method is O(|2; 211} and that of the interior point
method [25] is at least O(]Q1]>5 log,(1/e)), the superiority of
CW-FA is obvious>.

For subproblem 2, we have Theorem 2 similarly as follows:
Theorem 2: Let Q45 = {nlp, < Pt(,f), n € Q) and QF =

{nlp, > Pt(,f), n € a}. The optimal power allocation of

subproblem 2 to maximize the sum-rate of CU is

b= ) (Ba- I'o?/h,)" Vnenf
Pt(}f) VneOf

where A, satisfies 3, o4 (A2 ~To?/h,)" = PG, -

(2)

ZnEQf Pth .
Both the proof and the operating algorithm for Theorem
2 are similar to those for Theorem 1. We have already in-

troduced the inner-layer optimization of p,, when Ps,(izn

10)

and
P§Z2n are fixed. The remaining task is to optimize Ps(izn and
Ps%)n, which belong to the outer-layer optimization. The op-
timal values of Ps(izn and PS(ZZn can be found by an exhaus-
tive search over [0, Ppax]. However, it can be easily proved
(and is further confirmed by the simulations in the next section)

3Note that e in the expression O(|Q21]3% log,(1/€)) represents the conver-
gence precision of the interior point algorithm, and |21 | represents the cardinal-
ity of set £2;.

that problem 2 is convex for Ps(lltzn and Ps(zzn, so we can apply
the highly efficient bisection method to update the sum-power
variables. From the above analysis, we conclude that the total
complexity of the joint optimization method for problem 2 is
O ((|1]% + |Q22]%) log,(1/¢)), where ¢ is the convergence pre-

cision of Ps,(izn and Ps‘SBn This is acceptable in multiuser het-

erogeneous networks.

IV. NUMERICAL RESULTS AND DISCUSSION

In this section, we provide numerical results for the power
allocation method considering the limited sensing area of the
CUs and the combined PU protection. We assume that the sym-
bol duration is 100 ms, and the total bandwidth of the system
is 6 MHz, which is equally divided into eight independent sub-
bands [19]. The radius of the effective sensing area (area 1) is
d = 300 m, and the required BER of the CU is 10~2. We assume
that the PUs are uniformly distributed in area 1, and CU-Rx is
uniformly distributed within a 30-m radius of CU-Tx. The path-
loss exponent is e = 4. We do not consider the shadowing effect,
and we model the multipath fading of all links as a three-path
Rayleigh with an exponential power delay profile. We assume
that the noise power o2 and the PU-interference power 012) at
CU-Rx are both —100 dBW, the interference-power threshold
of each PU is —90 dBW, and the subchannel occupancy proba-
bility of each PU is Q4 = 0.3.

Firstly, we set the maximum transmission power of the CUs to
0 dBW (1 W) and evaluate the convexity of problem 2 for Ps,(izn
and PS(Zq)w In Fig. 2, the maximum sum-rate of the CUs per
symbol per Hz is plotted versus Ps(izn (or Ppax — Ps(izn) for one
random realization of all the links. We use exhaustive search to
list all the possible values within the interval [0, Pp.x]. This fig-
ure also reveals the characteristics of the outer-layer optimiza-

tion. The figure shows that the maximum sum-rate is a concave

function of Ps(izn, and a uniquely optimal point (Ps(izn =0.342

W, P2, = 0.658 W) of set Q; and Q is the final maximum
sum-rate of problem 2. Through multiple simulations with dif-
ferent realizations, we discover that all the sum-rate curves re-
veal similar concave characteristics of Ps(izn and Ps(ﬁZn Hence,
in the simulations, we use the bisection method instead of ex-
haustive search to optimize Ps(izn and P,SﬁZn, averaging the re-
sults of 10,000 independent experiments.

Fig. 3 shows the average maximum sum-rate of CU achieved
by our joint method and OSA*. The random-choosing Ps(izn and
Ps(fgn method and the interior point method for subproblem 1 are
presented for comparison (see Table 2). The figure shows that
the joint optimization method significantly outperforms OSA in
sum-rate for the entire P,y range (—30-30 dBW), especially
when P, >10 dBW. This is because when Py, is suffi-
ciently large, the system with combined protection has more
flexibility to divide power between the two types of subchannels
(occupied or not occupied by PUs), while the rate-increasing
speed of the OSA mode is relatively low since limited num-

4 As discussed in the Introduction, since SS mode does not give the leisure
spectrum using the protection principle, we do not compare the performance of
SS with our method, but we have borrowed the SS idea when PU presents in our
combined protection mechanism.
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Table 2. Different power allocation schemes.
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Fig. 2. Maximum sum-rate of CU versus Py (Prax = 0 dBW, P =

90 dBW)

bers of subchannels can be used. An interesting phenomenon
can be observed in Fig. 3: When P, >16 dBW, even the

“CW-FA + Ps%gn, Ps(ﬁn random” scheme achieves a transmis-
sion rate higher than that of the OSA mode. This is also because
the combined protection has more freedom in channel selection
and power allocation. The interior point + bisection method has
the same rate as the joint optimization method. This is expected
since both the interior point algorithm and CW-FA can find the
optimal solution of the convex subproblem.

Finally, Figs. 4 and 5 show the average maximum sum-rate of
the CUs per symbol per Hz versus the CUs’ required BER and
the number of subbands, respectively. These two figures show
that the rate performance of the proposed combined protection
and joint optimization method is better than the performance
of OSA for different BER values and numbers of subchannels.
This illustrates the superiority of our scheme for different values
of the system parameters.

V. CONCLUSION

Using a multi-area heterogeneous network model and the lim-
ited effective spectrum-sensing area of the CUs, we have pro-
posed a combined interference-avoidance principle to protect
the primary-network communication. We use dual decompo-
sition to transform the original power allocation problem into

20

10 30

0
P jdBW

max

Fig. 3. Maximum average sum-rate of CU versus Pnax (Pmax = 0 dBW,
P = 90 dBW)

0 L@
o C:W—F/&w';“:'r . Po random, £ w G dBW
45| OSA mode, £ = 0 ABW
—E— Joint optimization method, F, ., = & dBW

L0 -
—e CW-FA:£0), P?) random, £ =20 dBW
—e— 0SA mode, P,,,, = 20 dBW
3p|—F— Joint cptimization method, 7,,,,, = 20 dBW

Maximum sum-rate of CU (bits/symbol/Hz)

Fig. 4. Maximum average sum-rate of CU versus required BER (Ppax =
0 dBW and 20 dBW, P") = —90 dBW).

a two-layer optimization. For the inner-layer optimization, we
give the optimal solution theorem and develop a CW-F algo-
rithm with low complexity to find the solution. For the outer-
layer optimization, we use the bisection method to update the
sum-power of the channel sets. Numerical results show that the
power allocation scheme performs significantly better than the
OSA mode and other heuristic approaches in term of the aver-
age maximum sum-rate for different values of the parameters.
In future research, we will explore the following two questions:
1) In a multi-CU environment, when the PUs appear in different
areas corresponding to different CUs, how does combined pro-
tection influence the primary network? 2) How to find a tradeoff
between the maximizing the rate of cognitive systems and min-
imizing the collision probability of heterogeneous users, when
there is a false-alarm probability and missed-detection probabil-
ity in the effective sensing area?

APPENDIX

Proof of Theorem 1
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First, we write the Lagrangian function of subproblem 1 as

L(PS i, vn) = 3 Togy {1+ s ) -
D(o +02)

neth

(1)
(E Pn = Ps(im> - 3 (pn - Z—g) +

ne;

Y. UnPn

ncly
(11)
where A > 0, p, > 0, v, > 0, n € Q are Lagrange co-
efficients corresponding to the constraints. When a problem is
strictly convex, the KKT conditions are necessary and sufficient

for the optimal power allocation. The KKT conditions of sub-
problem 1 are

OL(PY, \, pin, ) o3
Opn - pn+r‘(r;2+ag) = A fin £ Un
hn
=0, ¥n € {12)
Zp”_Psum =0 (13)
nelly
(1
fin | pn— =) =0, Vneq (14)
In
UpPn = 0, Vn €y (15)

and constraints C1 and C4. We now give the derivation of (8)
and (9). From (12), we get

1 I( o2 02)
in2 r
= — ¥ . 1
Pn JEE—— I ¥n € (16)

1) For Vn € QF, clearly that p,, = ,,(;i) / Gn,» SINCE PpGn >

P, t{hl s not allowed pg, > Pf,f) when PUs exist, and if

Prdn < Pt(h), subchannel . would belong to set 4.

2) ForVn ¢ Ql, from p,g, < Pt(;) and (14), we can get
1n = 0, s0 {16) can be transformed to
ﬁ B (o2 + 0’12}}
—u, hn '

Pn = X 1Y)

It can be discussed that when v,, > 0, from (15), it follows
that p,, = 0. On the other hand, p, > 0 when v, = 0,
therefore, (17) reduces to p, = 1/AIn2—(T(0% 4 62) /hy)
In conclusion, we obtain

1 T{o? + Ug)
Aln2 hn

Pn = , vn e Q. (18)
Set A = 1/A1n 2, then from 1) and 2), we can derive (8).

3) From (18), we have ) > Wfﬁyﬂ—né > 0, so given (13),

. (1 .
we obtain ) | - Pn = e,

Ps(ignz an: Z P+ Z Pn
ne nengt neQf
+ ;
T(6% + 62) Py
-y (a-T5E) e X B 0
neQf neQf -
which is also (9).

Now we have derived (8) and (9) from the KKT conditions,
which confirm the ‘only if” part (sufficient condition). Finally,
since the KKT conditions are sufficient and necessary for the op-
timal power atlocation, the ‘if” part of Theorem 1 immediately
follows. This completes the proof.
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