• Title/Summary/Keyword: network optimization

Search Result 2,239, Processing Time 0.029 seconds

Designing Distributed Real-Time Systems with Decomposition of End-to-End Timing Donstraints (양극단 지연시간의 분할을 이용한 분산 실시간 시스템의 설계)

  • Hong, Seong-Soo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.3 no.5
    • /
    • pp.542-554
    • /
    • 1997
  • In this paper, we present a resource conscious approach to designing distributed real-time systems as an extension of our original approach [8][9] which was limited to single processor systems. Starting from a given task graph and a set of end-to-end constraints, we automatically generate task attributes (e.g., periods and deadlines) such that (i) the task set is schedulable, and (ii) the end-to-end timing constraints are satisfied. The method works by first transforming the end-to-end timing constraints into a set of intermediate constraints on task attributes, and then solving the intermediate constraints. The complexity of constraint solving is tackled by reducing the problem into relatively tractable parts, and then solving each sub-problem using heuristics to enhance schedulability. In this paper, we build on our single processor solution and show how it can be extended for distributed systems. The extension to distributed systems reveals many interesting sub-problems, solutions to which are presented in this paper. The main challenges arise from end-to-end propagation delay constraints, and therefore this paper focuses on our solutions for such constraints. We begin with extending our communication scheme to provide tight delay bounds across a network, while hiding the low-level details of network communication. We also develop an algorithm to decompose end-to-end bounds into local bounds on each processor of making extensive use of relative load on each processor. This results in significant decoupling of constraints on each processor, without losing its capability to find a schedulable solution. Finally, we show, how each of these parts fit into our overall methodology, using our previous results for single processor systems.

  • PDF

The Study on the Design and Optimization of Storage for the Recording of High Speed Astronomical Data (초고속 관측 데이터 수신 및 저장을 위한 기록 시스템 설계 및 성능 최적화 연구)

  • Song, Min-Gyu;Kang, Yong-Woo;Kim, Hyo-Ryoung
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.12 no.1
    • /
    • pp.75-84
    • /
    • 2017
  • It becomes more and more more important for the storage that supports high speed recording and stable access from network environment. As one field of basic science which produces massive astronomical data, VLBI(: Very Long Baseline Interferometer) is now demanding more data writing performance and which is directly related to astronomical observation with high resolution and sensitivity. But most of existing storage are cloud model based for the high throughput of general IT, finance, and administrative service, and therefore it not the best choice for recording of big stream data. Therefore, in this study, we design storage system optimized for high performance of I/O and concurrency. To solve this problem, we implement packet read and writing module through the use of libpcap and pf_ring API on the multi core CPU environment, and build a scalable storage based on software RAID(: Redundant Array of Inexpensive Disks) for the efficient process of incoming data from external network.

Distributed Transmit Power Control for Optimal End-to-End Throughput in Wireless Multihop Networks (무선 멀티홉 네트워크에서 종단간 최적 전송률을 위한 분산 송신전력제어)

  • Choi, Hyun-Ho
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.11 no.2
    • /
    • pp.92-101
    • /
    • 2012
  • In this paper, we propose a distributed transmit power control algorithm for optimal end-to-end throughput in wireless multihop networks. Considering a solidarity property of link rates consisting of a multihop link and the fact that the multihop end-to-end throughput is determined by the minimum link rate, the proposed scheme controls the transmit power to make all link rates be equal and so maximizes the end-to-end throughput of multihop link. In addition, in the proposed scheme the transmit node calculates its transmit power autonomously in a distributed manner just through the information sharing with its neighbor nodes and so decreases the information sharing overhead. Simulation results show that the proposed scheme achieves significant improvements in terms of end-to-end throughput and power consumption compared with the conventional maximum equal power allocation scheme.

Energy-efficient Channel Allocation MAC for Wearable WBANs (웨어러블 WBANs를 위한 에너지 효율적인 채널할당 MAC)

  • Lee, Jung-Jae;Kim, In-Hwan
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.11 no.11
    • /
    • pp.1135-1140
    • /
    • 2016
  • The main challenge in designing wearable WBANs is to guarantee the balance of QoS demands in the network with the low power constraints of limited battery powered nodes. Low power devices implanted in or attached to the body should be designed to meet minimum energy requirements due to their limited battery life and be small in size to be easily wearable. In this paper, we propose a method for optimizing channel allocation method that is compatible with the IEEE 802.15.6 standard, enables the maximum amount of power charge at idle, guarantees the QoS of a WBAN, and provides the reliable date transmission between nodes and hubs in the network. Our extensive simulations will show that the method we propose not only maximizes the QoS in packet transmission but also improves the level of energy efficiency.

Performance Improvement of Continuous Digits Speech Recognition Using the Transformed Successive State Splitting and Demi-syllable Pair (반음절쌍과 변형된 연쇄 상태 분할을 이용한 연속 숫자 음 인식의 성능 향상)

  • Seo Eun-Kyoung;Choi Gab-Keun;Kim Soon-Hyob;Lee Soo-Jeong
    • Journal of Korea Multimedia Society
    • /
    • v.9 no.1
    • /
    • pp.23-32
    • /
    • 2006
  • This paper describes the optimization of a language model and an acoustic model to improve speech recognition using Korean unit digits. Since the model is composed of a finite state network (FSN) with a disyllable, recognition errors of the language model were reduced by analyzing the grammatical features of Korean unit digits. Acoustic models utilize a demisyllable pair to decrease recognition errors caused by inaccurate division of a phone or monosyllable due to short pronunciation time and articulation. We have used the K-means clustering algorithm with the transformed successive state splitting in the feature level for the efficient modelling of feature of the recognition unit. As a result of experiments, 10.5% recognition rate is raised in the case of the proposed language model. The demi-syllable fair with an acoustic model increased 12.5% recognition rate and 1.5% recognition rate is improved in transformed successive state splitting.

  • PDF

Spatial and Temporal Resolution Selection for Bit Stream Extraction in H.264 Scalable Video Coding (H.264 SVC에서 비트 스트림 추출을 위한 공간과 시간 해상도 선택 기법)

  • Kim, Nam-Yun;Hwang, Ho-Young
    • Journal of Korea Multimedia Society
    • /
    • v.13 no.1
    • /
    • pp.102-110
    • /
    • 2010
  • H.264 SVC(Scalable Video Coding) provides the advantages of low disk storage requirement and high scalability. However, a streaming server or a user terminal has to extract a bit stream from SVC file. This paper proposes a bit stream extraction method which can get the maximum PSNR value while date bit rate does not exceed the available network bandwidth. To do this, this paper obtains the information about extraction points which can get the maximum PSNR value offline and decides the spatial/temporal resolution of a bit stream at run-time. This resolution information along with available network bandwidth is used as the parameters to a bit stream extractor. Through experiment with JSVM reference software, we proved that proposed bit stream extraction method can get a higher PSNR value.

Adversarial Framework for Joint Light Field Super-resolution and Deblurring (라이트필드 초해상도와 블러 제거의 동시 수행을 위한 적대적 신경망 모델)

  • Lumentut, Jonathan Samuel;Baek, Hyungsun;Park, In Kyu
    • Journal of Broadcast Engineering
    • /
    • v.25 no.5
    • /
    • pp.672-684
    • /
    • 2020
  • Restoring a low resolution and motion blurred light field has become essential due to the growing works on parallax-based image processing. These tasks are known as light-field enhancement process. Unfortunately, only a few state-of-the-art methods are introduced to solve the multiple problems jointly. In this work, we design a framework that jointly solves light field spatial super-resolution and motion deblurring tasks. Particularly, we generate a straight-forward neural network that is trained under low-resolution and 6-degree-of-freedom (6-DOF) motion-blurred light field dataset. Furthermore, we propose the strategy of local region optimization on the adversarial network to boost the performance. We evaluate our method through both quantitative and qualitative measurements and exhibit superior performance compared to the state-of-the-art methods.

Integrated Multiple Simulation for Optimizing Performance of Stock Trading Systems based on Neural Networks (통합 다중 시뮬레이션에 의한 신경망 기반 주식 거래 시스템의 성능 최적화)

  • Lee, Jae-Won;O, Jang-Min
    • The KIPS Transactions:PartB
    • /
    • v.14B no.2
    • /
    • pp.127-134
    • /
    • 2007
  • There are many researches about the intelligent stock trading systems with the help of the advance of the artificial intelligence such as machine learning techniques, Though the establishment of the reasonable trading policy plays an important role in the performance of the trading systems most researches focused on the improvement of the predictability. Also some previous works, which treated the trading policy, treated the simplified versions dependent on the predictors in less systematic ways. In this paper, we propose the integrated multiple simulation' as a method of optimizing trading performance of stock trading systems. The propose method is adopted in the NXShell a development environment for neural network based stock trading systems. Under the proposed integrated multiple simulation', we simulate the multiple tradings for all combinations of the neural network's outputs and the trading policy parameters, evaluate the learning performance according to the various metrics and establish the optimal policy for a given prediction module based on the resulting performance. In the experiment, we present the trading policy comparison results using the stock value data from the KOSPI and KOSDAQ.

HDMI Resolution Control of Smart Platform with WiFi Channel Analysis (WiFi 채널분석에 따른 스마트 플랫폼의 HDMI 해상도 조정)

  • Hong, Sung-Chan;Kang, Min-Goo
    • Journal of Satellite, Information and Communications
    • /
    • v.11 no.2
    • /
    • pp.23-28
    • /
    • 2016
  • In this paper, we proposed the novel algorithm which controls the resolution of the HDMI(High Definition Multimedia Interface) by the channel estimation from WiFi-AP(Access Point) in the ISM(Industry-Science-Medical) band. The 2.4 and 5 GHz channel models are widely used since they have identical RF property as RSSI(Received Signal Strength Indication). Especially, the performance degradation of signal-transmission and streaming of WiFi will be occurred by the co-channel interference between AP(Access Point) and increased number of smart devices. Therefore, the optimization scheme of video format timing was designed by HDMI-CEC(Consumer Electronics Control) which considers the transmission speed of radio channel. The HDMI resolution, video quality of home-gateway and digital TV and the decision of PIP position can be maintained by the protocols between smart devices and DLNA(Digital Living Network Alliance) via proposed technique.

Design of Hierarchical Ring-Mesh Optical Networks Considering Cabling Cost (케이블 비용을 고려한 링메쉬 구조의 광통신망 설계)

  • Han, Jung-Hee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.5
    • /
    • pp.1716-1729
    • /
    • 2010
  • In this paper, we deal with a hierarchical ring-mesh optical network design problem. The objective is to minimize the total cost of optical add-drop multiplexers (OADMs) handling intra-ring traffic, optical cross-connects (OXCs) handling inter-ring traffic, and cabling cost among OADMs and among OXCs, while satisfying intra-ring and inter-ring capacities. We develop an integer programming (IP) formulation for the problem and devise some cutting planes that partially break the symmetry of rings. Dealing with the inherent computational complexity of the problem, we devise an effective heuristic procedure that finds a good quality feasible solution within reasonable computing times. Computational results demonstrate the efficacy of the proposed solution procedure; the developed symmetry breaking inequalities significantly reduce the computing time to find an optimal solution for small size problems, and the heuristic procedure finds a better feasible solution than that CPLEX, a commercial optimization software, finds for large size problems.