• Title/Summary/Keyword: network optimization

Search Result 2,239, Processing Time 0.029 seconds

Artificial Intelligence for the Fourth Industrial Revolution

  • Jeong, Young-Sik;Park, Jong Hyuk
    • Journal of Information Processing Systems
    • /
    • v.14 no.6
    • /
    • pp.1301-1306
    • /
    • 2018
  • Artificial intelligence is one of the key technologies of the Fourth Industrial Revolution. This paper introduces the diverse kinds of approaches to subjects that tackle diverse kinds of research fields such as model-based MS approach, deep neural network model, image edge detection approach, cross-layer optimization model, LSSVM approach, screen design approach, CPU-GPU hybrid approach and so on. The research on Superintelligence and superconnection for IoT and big data is also described such as 'superintelligence-based systems and infrastructures', 'superconnection-based IoT and big data systems', 'analysis of IoT-based data and big data', 'infrastructure design for IoT and big data', 'artificial intelligence applications', and 'superconnection-based IoT devices'.

Estimating People's Position Using Matrix Decomposition

  • Dao, Thi-Nga;Yoon, Seokhoon
    • International journal of advanced smart convergence
    • /
    • v.8 no.2
    • /
    • pp.39-46
    • /
    • 2019
  • Human mobility estimation plays a key factor in a lot of promising applications including location-based recommendation systems, urban planning, and disease outbreak control. We study the human mobility estimation problem in the case where recent locations of a person-of-interest are unknown. Since matrix decomposition is used to perform latent semantic analysis of multi-dimensional data, we propose a human location estimation algorithm based on matrix factorization to reconstruct the human movement patterns through the use of information of persons with correlated movements. Specifically, the optimization problem which minimizes the difference between the reconstructed and actual movement data is first formulated. Then, the gradient descent algorithm is applied to adjust parameters which contribute to reconstructed mobility data. The experiment results show that the proposed framework can be used for the prediction of human location and achieves higher predictive accuracy than a baseline model.

Data-Centric Hyper-distributed Autonomous Infrastructure Technologies (데이터 중심 초분산 자율 인프라 기술)

  • Kim, S.M.;Kim, S.K.;Byun, S.H.;Jung, H.Y.;Kang, S.H.;Lim, J.C.;Yoon, S.H.;Shin, Y.Y.
    • Electronics and Telecommunications Trends
    • /
    • v.34 no.1
    • /
    • pp.13-22
    • /
    • 2019
  • Various hyper-intelligent and ultra-realistic data-driven services are being increasingly developed with the goal of achieving a hyper-connected intelligent society. To sustain this trend, our research focuses on the integration and optimization of data-driven applications from several aspects such as delivery, storage, execution, and sharing of data and software, beyond the limitations of the existing network infrastructure. In this paper, we present important research issues of data-centric hyper-distributed autonomous infrastructure technologies.

A Cache Privacy Protection Mechanism based on Dynamic Address Mapping in Named Data Networking

  • Zhu, Yi;Kang, Haohao;Huang, Ruhui
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.12
    • /
    • pp.6123-6138
    • /
    • 2018
  • Named data networking (NDN) is a new network architecture designed for next generation Internet. Router-side content caching is one of the key features in NDN, which can reduce redundant transmission, accelerate content distribution and alleviate congestion. However, several security problems are introduced as well. One important security risk is cache privacy leakage. By measuring the content retrieve time, adversary can infer its neighbor users' hobby for privacy content. Focusing on this problem, we propose a cache privacy protection mechanism (named as CPPM-DAM) to identify legitimate user and adversary using Bloom filter. An optimization for storage cost is further provided to make this mechanism more practical. The simulation results of ndnSIM show that CPPM-DAM can effectively protect cache privacy.

Extraction of the OLED Device Parameter based on Randomly Generated Monte Carlo Simulation with Deep Learning (무작위 생성 심층신경망 기반 유기발광다이오드 흑점 성장가속 전산모사를 통한 소자 변수 추출)

  • You, Seung Yeol;Park, Il-Hoo;Kim, Gyu-Tae
    • Journal of the Semiconductor & Display Technology
    • /
    • v.20 no.3
    • /
    • pp.131-135
    • /
    • 2021
  • Numbers of studies related to optimization of design of organic light emitting diodes(OLED) through machine learning are increasing. We propose the generative method of the image to assess the performance of the device combining with machine learning technique. Principle parameter regarding dark spot growth mechanism of the OLED can be the key factor to determine the long-time performance. Captured images from actual device and randomly generated images at specific time and initial pinhole state are fed into the deep neural network system. The simulation reinforced by the machine learning technique can predict the device parameters accurately and faster. Similarly, the inverse design using multiple layer perceptron(MLP) system can infer the initial degradation factors at manufacturing with given device parameter to feedback the design of manufacturing process.

Intrusion Detection System for Home Windows based Computers

  • Zuzcak, Matej;Sochor, Tomas;Zenka, Milan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.9
    • /
    • pp.4706-4726
    • /
    • 2019
  • The paper is devoted to the detailed description of the distributed system for gathering data from Windows-based workstations and servers. The research presented in the beginning demonstrates that neither a solution for gathering data on attacks against Windows based PCs is available at present nor other security tools and supplementary programs can be combined in order to achieve the required attack data gathering from Windows computers. The design of the newly proposed system named Colander is presented, too. It is based on a client-server architecture while taking much inspiration from previous attempts for designing systems with similar purpose, as well as from IDS systems like Snort. Colander emphasizes its ease of use and minimum demand for system resources. Although the resource usage is usually low, it still requires further optimization, as is noted in the performance testing. Colander's ability to detect threats has been tested by real malware, and it has undergone a pilot field application. Future prospects and development are also proposed.

Optimization of Microgrid Energy Network and Test on HILS System (마이크로 에너지 네트워크 최적화 및 HILS 기반의 테스트)

  • Lee, Ji-Hye;Yoo, Hyeong-Jun;Kim, Nam-Dae;Jeon, Chang-Jo;Kim, Hak-Man;Im, Yong Hoon;Lee, Jae Yong
    • Annual Conference of KIPS
    • /
    • 2013.05a
    • /
    • pp.416-417
    • /
    • 2013
  • 마이크로 에너지 네트워크란 건물군 내 에너지 수요를 최소한의 비용으로 충족시키기 위하여 다양한 에너지원으로 구성되어 있는 네트워크이다. 본 논문에서는 마이크로 에너지 네트워크의 최적 운용을 위한 마이크로 에너지 네트워크 EMS (Energy Management System)의 핵심 기능을 구현하고, 이를 HILS (Hardware-in-the-Loop Simulation) 시스템을 이용하여 추후 실제 마이크로 에너지 네트워크에 대한 적용 가능성을 검토하고자 한다.

An Energy-aware Buffer-based Video Streaming Optimization Scheme (에너지 효율적인 버퍼 기반 비디오 스트리밍 최적화 기법)

  • Kang, Young-myoung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.10
    • /
    • pp.1563-1566
    • /
    • 2022
  • Video streaming applications such as Netflix and Youtube are widely used in our daily life. A DASH based streaming client exploits adaptive bit rate (ABR) method to choose the most appropriate video source representation that the network can support. In this paper we propose a novel energy-aware ABR scheme that adds the ability to monitor energy efficiency in addition to the linear quadratic regulator algorithm we previously introduced. Our trace-driven simulation studies show that our proposed scheme mitigates and shortens re-buffering, resulting in energy savings of mobile devices while preserving the similar QoE compared to the state-of-the-art ABR algorithms.

A modified error-oriented weight positioning model based on DV-Hop

  • Wang, Penghong;Cai, Xingjuan;Xie, Liping
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.2
    • /
    • pp.405-423
    • /
    • 2022
  • The distance vector-hop (DV-Hop) is one of the emblematic algorithms that use node connectivity for locating, which often accompanies by a large positioning error. To reduce positioning error, the bio-inspired algorithm and weight optimization model are introduced to address positioning. Most scholars argue that the weight value decreases as the hop counts increases. However, this point of view ignores the intrinsic relationship between the error and weight. To address this issue, this paper constructs the relationship model between error and hop counts based on actual communication characteristics of sensor nodes in wireless sensor network. Additionally, we prove that the error converges to 1/6CR when the hop count increase and tendency to infinity. Finally, this paper presents a modified error-oriented weight positioning model, and implements it with genetic algorithm. The experimental results demonstrate excellent robustness and error removal.

Optimization of Action Recognition based on Slowfast Deep Learning Model using RGB Video Data (RGB 비디오 데이터를 이용한 Slowfast 모델 기반 이상 행동 인식 최적화)

  • Jeong, Jae-Hyeok;Kim, Min-Suk
    • Journal of Korea Multimedia Society
    • /
    • v.25 no.8
    • /
    • pp.1049-1058
    • /
    • 2022
  • HAR(Human Action Recognition) such as anomaly and object detection has become a trend in research field(s) that focus on utilizing Artificial Intelligence (AI) methods to analyze patterns of human action in crime-ridden area(s), media services, and industrial facilities. Especially, in real-time system(s) using video streaming data, HAR has become a more important AI-based research field in application development and many different research fields using HAR have currently been developed and improved. In this paper, we propose and analyze a deep-learning-based HAR that provides more efficient scheme(s) using an intelligent AI models, such system can be applied to media services using RGB video streaming data usage without feature extraction pre-processing. For the method, we adopt Slowfast based on the Deep Neural Network(DNN) model under an open dataset(HMDB-51 or UCF101) for improvement in prediction accuracy.