• Title/Summary/Keyword: network optimization

Search Result 2,239, Processing Time 0.035 seconds

A Local Tuning Scheme of RED using Genetic Algorithm for Efficient Network Management in Muti-Core CPU Environment (멀티코어 CPU 환경하에서 능률적인 네트워크 관리를 위한 유전알고리즘을 이용한 국부적 RED 조정 기법)

  • Song, Ja-Young;Choe, Byeong-Seog
    • Journal of Internet Computing and Services
    • /
    • v.11 no.1
    • /
    • pp.1-13
    • /
    • 2010
  • It is not easy to set RED(Random Early Detection) parameter according to environment in managing Network Device. Especially, it is more difficult to set parameter in the case of maintaining the constant service rate according to the change of environment. In this paper, we hypothesize the router that has Multi-core CPU in output queue and propose AI RED(Artificial Intelligence RED), which directly induces Genetic Algorithm of Artificial Intelligence in the output queue that is appropriate to the optimization of parameter according to RED environment, which is automatically adaptive to workload. As a result, AI RED Is simpler and finer than FuRED(Fuzzy-Logic-based RED), and RED parameter that AI RED searches through simulations is more adaptive to environment than standard RED parameter, providing the effective service. Consequently, the automation of management of RED parameter can provide a manager with the enhancement of efficiency in Network management.

An optimal feature selection algorithm for the network intrusion detection system (네트워크 침입 탐지를 위한 최적 특징 선택 알고리즘)

  • Jung, Seung-Hyun;Moon, Jun-Geol;Kang, Seung-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.10a
    • /
    • pp.342-345
    • /
    • 2014
  • Network intrusion detection system based on machine learning methods is quite dependent on the selected features in terms of accuracy and efficiency. Nevertheless, choosing the optimal combination of features from generally used features to detect network intrusion requires extensive computing resources. For instance, the number of possible feature combinations from given n features is $2^n-1$. In this paper, to tackle this problem we propose a optimal feature selection algorithm. Proposed algorithm is based on the local search algorithm, one of representative meta-heuristic algorithm for solving optimization problem. In addition, the accuracy of clusters which obtained using selected feature components and k-means clustering algorithm is adopted to evaluate a feature assembly. In order to estimate the performance of our proposed algorithm, comparing with a method where all features are used on NSL-KDD data set and multi-layer perceptron.

  • PDF

Optimization Technique to recognize Hand Motion of Wrist Rehabilitation using Neural Network (신경망을 활용한 손목재활 수부 동작 인식 최적화 기법)

  • Lee, Su-Hyeon;Lee, Young-Keun
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.2
    • /
    • pp.117-124
    • /
    • 2021
  • This study is a study to recognize hand movements using a neural network for wrist rehabilitation. The rehabilitation of the hand aims to restore the function of the injured hand to the maximum and enable daily life, occupation, and hobby. It is common for a physical therapist, an occupational therapist, and a security tool maker to form a team and approach a doctor for a hand rehabilitation. However, it is very inefficient economically and temporally to find a place for treatment. In order to solve this problem, in this study, patients directly use smart devices to perform rehabilitation treatment. Using this will be very helpful in terms of cost and time. In this study, a wrist rehabilitation dataset was created by collecting data on 4 types of rehabilitation exercises from 10 persons. Hand gesture recognition was constructed using a neural network. As a result, the accuracy of 93% was obtained, and the usefulness of this system was verified.

Kriging Regressive Deep Belief WSN-Assisted IoT for Stable Routing and Energy Conserved Data Transmission

  • Muthulakshmi, L.;Banumathi, A.
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.7
    • /
    • pp.91-102
    • /
    • 2022
  • With the evolution of wireless sensor network (WSN) technology, the routing policy has foremost importance in the Internet of Things (IoT). A systematic routing policy is one of the primary mechanics to make certain the precise and robust transmission of wireless sensor networks in an energy-efficient manner. In an IoT environment, WSN is utilized for controlling services concerning data like, data gathering, sensing and transmission. With the advantages of IoT potentialities, the traditional routing in a WSN are augmented with decision-making in an energy efficient manner to concur finer optimization. In this paper, we study how to combine IoT-based deep learning classifier with routing called, Kriging Regressive Deep Belief Neural Learning (KR-DBNL) to propose an efficient data packet routing to cope with scalability issues and therefore ensure robust data packet transmission. The KR-DBNL method includes four layers, namely input layer, two hidden layers and one output layer for performing data transmission between source and destination sensor node. Initially, the KR-DBNL method acquires the patient data from different location. Followed by which, the input layer transmits sensor nodes to first hidden layer where analysis of energy consumption, bandwidth consumption and light intensity are made using kriging regression function to perform classification. According to classified results, sensor nodes are classified into higher performance and lower performance sensor nodes. The higher performance sensor nodes are then transmitted to second hidden layer. Here high performance sensor nodes neighbouring sensor with higher signal strength and frequency are selected and sent to the output layer where the actual data packet transmission is performed. Experimental evaluation is carried out on factors such as energy consumption, packet delivery ratio, packet loss rate and end-to-end delay with respect to number of patient data packets and sensor nodes.

Performance comparison evaluation of speech enhancement using various loss functions (다양한 손실 함수를 이용한 음성 향상 성능 비교 평가)

  • Hwang, Seo-Rim;Byun, Joon;Park, Young-Cheol
    • The Journal of the Acoustical Society of Korea
    • /
    • v.40 no.2
    • /
    • pp.176-182
    • /
    • 2021
  • This paper evaluates and compares the performance of the Deep Nerual Network (DNN)-based speech enhancement models according to various loss functions. We used a complex network that can consider the phase information of speech as a baseline model. As the loss function, we consider two types of basic loss functions; the Mean Squared Error (MSE) and the Scale-Invariant Source-to-Noise Ratio (SI-SNR), and two types of perceptual-based loss functions, including the Perceptual Metric for Speech Quality Evaluation (PMSQE) and the Log Mel Spectra (LMS). The performance comparison was performed through objective evaluation and listening tests with outputs obtained using various combinations of the loss functions. Test results show that when a perceptual-based loss function was combined with MSE or SI-SNR, the overall performance is improved, and the perceptual-based loss functions, even exhibiting lower objective scores showed better performance in the listening test.

Consensus-Based Distributed Algorithm for Optimal Resource Allocation of Power Network under Supply-Demand Imbalance (수급 불균형을 고려한 전력망의 최적 자원 할당을 위한 일치 기반의 분산 알고리즘)

  • Young-Hun, Lim
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.15 no.6
    • /
    • pp.440-448
    • /
    • 2022
  • Recently, due to the introduction of distributed energy resources, the optimal resource allocation problem of the power network is more and more important, and the distributed resource allocation method is required to process huge amount of data in large-scale power networks. In the optimal resource allocation problem, many studies have been conducted on the case when the supply-demand balance is satisfied due to the limitation of the generation capacity of each generator, but the studies considering the supply-demand imbalance, that total demand exceeds the maximum generation capacity, have rarely been considered. In this paper, we propose the consensus-based distributed algorithm for the optimal resource allocation of power network considering the supply-demand imbalance condition as well as the supply-demand balance condition. The proposed distributed algorithm is designed to allocate the optimal resources when the supply-demand balance condition is satisfied, and to measure the amount of required resources when the supply-demand is imbalanced. Finally, we conduct the simulations to verify the performance of the proposed algorithm.

Improvement of Electroforming Process System Based on Double Hidden Layer Network (이중 비밀 다층구조 네트워크에 기반한 전기주조 공정 시스템의 개선)

  • Byung-Won Min
    • Journal of Internet of Things and Convergence
    • /
    • v.9 no.3
    • /
    • pp.61-67
    • /
    • 2023
  • In order to optimize the pulse electroforming copper process, a double hidden layer BP (Back Propagation) neural network is constructed. Through sample training, the mapping relationship between electroforming copper process conditions and target properties is accurately established, and the prediction of microhardness and tensile strength of the electroforming layer in the pulse electroforming copper process is realized. The predicted results are verified by electrodeposition copper test in copper pyrophosphate solution system with pulse power supply. The results show that the microhardness and tensile strength of copper layer predicted by "3-4-3-2" structure double hidden layer neural network are very close to the experimental values, and the relative error is less than 2.32%. In the parameter range, the microhardness of copper layer is between 100.3~205.6MPa and the tensile strength is between 112~485MPa.When the microhardness and tensile strength are optimal,the corresponding process conditions are as follows: current density is 2A-dm-2, pulse frequency is 2KHz and pulse duty cycle is 10%.

A Study on the Construction of an Artificial Neural Network for the Experimental Model Transition of Surface Roughness Prediction Results based on Theoretical Models in Mold Machining (금형의 절삭가공에서 이론 모형 기반 표면거칠기 예측 결과의 실험적 모형 전환을 위한 인공신경망 구축에 대한 연구)

  • Ji-Woo Kim;Dong-Won Lee;Jong-Sun Kim;Jong-Su Kim
    • Design & Manufacturing
    • /
    • v.17 no.4
    • /
    • pp.1-7
    • /
    • 2023
  • In the fabrication of curved multi-display glass for automotive use, the surface roughness of the mold is a critical quality factor. However, the difficulty in detecting micro-cutting signals in a micro-machining environment and the absence of a standardized model for predicting micro-cutting forces make it challenging to intuitively infer the correlation between cutting variables and actual surface roughness under machining conditions. Consequently, current practices heavily rely on machining condition optimization through the utilization of cutting models and experimental research for force prediction. To overcome these limitations, this study employs a surface roughness prediction formula instead of a cutting force prediction model and converts the surface roughness prediction formula into experimental data. Additionally, to account for changes in surface roughness during machining runtime, the theory of position variables has been introduced. By leveraging artificial neural network technology, the accuracy of the surface roughness prediction formula model has improved by 98%. Through the application of artificial neural network technology, the surface roughness prediction formula model, with enhanced accuracy, is anticipated to reliably perform the derivation of optimal machining conditions and the prediction of surface roughness in various machining environments at the analytical stage.

Optimization of Microalgae-Based Biodiesel Supply Chain Network Under the Uncertainty in Supplying Carbon Dioxide (이산화탄소 원료 공급의 불확실성을 고려한 미세조류 기반 바이오 디젤 공급 네트워크 최적화)

  • Ahn, Yuchan;Kim, Junghwan;Han, Jeehoon
    • Korean Chemical Engineering Research
    • /
    • v.58 no.3
    • /
    • pp.396-407
    • /
    • 2020
  • As fossil fuels are depleted worldwide, alternative resources is required to replace fossil fuels, and biofuels are in the spotlight as alternative resources. Biofuels are produced from biomass, which is a renewable resource to produce biofuels or bio-chemicals. Especially, in order to substitute fossil fuels, the research focusing the biofuel (biodiesel) production based on CO2 and biomass achieves more attention recently. To produce biomass-based biodiesel, the development of a supply chain network is required considering the amounts of feedstocks (ex, CO2 and water) required producing biodiesel, potential locations and capacities of bio-refineries, and transportations of biodiesel produced at biorefineries to demand cities. Although many studies of the biomass-based biodiesel supply chain network are performed, there are few types of research handled the uncertainty in CO2 supply which influences the optimal strategies of microalgae-based biodiesel production. Because CO2, which is used in the production of microalgae-based biodiesel as one of important resources, is captured from the off-gases emitted in power plants, the uncertainty in CO2 supply from power plants has big impacts on the optimal configuration of the biodiesel supply chain network. Therefore, in this study, to handle those issues, we develop the two-stage stochastic model to determine the optimal strategies of the biodiesel supply chain network considering the uncertainty in CO2 supply. The goal of the proposed model is to minimize the expected total cost of the biodiesel supply chain network considering the uncertain CO2 supply as well as satisfy diesel demands at each city. This model conducted a case study satisfying 10% diesel demand in the Republic of Korea. The overall cost of the stochastic model (US$ 12.9/gallon·y) is slightly higher (23%) than that of the deterministic model (US$ 10.5/gallon·y). Fluctuations in CO2 supply (stochastic model) had a significant impact on the optimal strategies of the biodiesel supply network.

An Optimization Model and Heuristic Algorithms for Multi-Ring Design in Fiber-Optic Networks (광전송망에서의 다중링 설계를 위한 최적화 모형 및 휴리스틱 알고리즘)

  • 이인행;이영옥;정순기
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.1B
    • /
    • pp.15-30
    • /
    • 2000
  • The important considerations in the design of fiber-optic networks are reliability and survivability preparing against a failure. The SDH(Synchronous Digital Hierarchy), the international standard of optical transmission, offers several network reconfiguration methods that enable network to be automatically restored from failure. One of the methods is the SHR(Self Healing Ring), which is a ring topology system. Most network providers have constructed their backbone networks with SHR architecture since it can provide survivability economically. The network architecture has eventually evolved into a multi-ring network comprised of interconnected rings. This paper addresses multi-ring network design problems is to minimize ring-construction cost. This problem can be formulated with MIP(mixed integer programming) model. However, it is difficult to solve the model within reasonable computing time on a large scale network because the model is NP-complete. Furthermore, in practice we should consider the problem of routing demands on rings to minimize total cost. This routing problem involves multiplex bundling at the intermediate nodes. A family of heuristic algorithms is presented for this problem. These algorithms include gateway selection and routing of inter-ring demands as well as load balancing on single rings. The developed heuristic algorithms are applied to some network provider's regional and long-distance transmission networks. We show an example of ring design and compare it with another ring topology design. Finally, we analysis the effect bundling.

  • PDF