• Title/Summary/Keyword: network optimization

Search Result 2,260, Processing Time 0.029 seconds

Efficient Approach for Maximizing Lifespan in Wireless Sensor Networks by Using Mobile Sinks

  • Nguyen, Hoc Thai;Nguyen, Linh Van;Le, Hai Xuan
    • ETRI Journal
    • /
    • v.39 no.3
    • /
    • pp.353-363
    • /
    • 2017
  • Recently, sink mobility has been shown to be highly beneficial in improving network lifetime in wireless sensor networks (WSNs). Numerous studies have exploited mobile sinks (MSs) to collect sensed data in order to improve energy efficiency and reduce WSN operational costs. However, there have been few studies on the effectiveness of MS operation on WSN closed operating cycles. Therefore, it is important to investigate how data is collected and how to plan the trajectory of the MS in order to gather data in time, reduce energy consumption, and improve WSN network lifetime. In this study, we combine two methods, the cluster-head election algorithm and the MS trajectory optimization algorithm, to propose the optimal MS movement strategy. This study aims to provide a closed operating cycle for WSNs, by which the energy consumption and running time of a WSN is minimized during the cluster election and data gathering periods. Furthermore, our flexible MS movement scenarios achieve both a long network lifetime and an optimal MS schedule. The simulation results demonstrate that our proposed algorithm achieves better performance than other well-known algorithms.

Optimal Allocation Strategy Based on Stackelberg Game for Inspecting Drunk Driving on Traffic Network

  • Jie, Yingmo;Li, Mingchu;Tang, Tingting;Guo, Cheng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.12
    • /
    • pp.5759-5779
    • /
    • 2017
  • As the main means to cope with the stubborn problem of drunk driving, the inspection of drunk driving has already been paid more attention and thus reinforced. In this paper, we model this scenario as a Stackelberg game, where the police department (called defender) allocates resources dynamically in terms of the traffic situation on the traffic network to arrest drink drivers and drivers who drink (called attacker), whether choosing drunk driving or designated driving service, expect to minimize their cost for given travel routes. However, with the number of resources are limited, our goal is to calculate the optimal resource allocation strategy for the defender. Therefore, first, we provide an effective approach (named OISDD) to fulfill our goal, i.e., generate the optimal strategy to inspect drunk driving. Second, we apply OISDD to directed graphs (which are abstracted from Dalian traffic network) to analyze and test its correctness and rationality. The experimental results show that OISDD is feasible and efficient.

Wavelet-like convolutional neural network structure for time-series data classification

  • Park, Seungtae;Jeong, Haedong;Min, Hyungcheol;Lee, Hojin;Lee, Seungchul
    • Smart Structures and Systems
    • /
    • v.22 no.2
    • /
    • pp.175-183
    • /
    • 2018
  • Time-series data often contain one of the most valuable pieces of information in many fields including manufacturing. Because time-series data are relatively cheap to acquire, they (e.g., vibration signals) have become a crucial part of big data even in manufacturing shop floors. Recently, deep-learning models have shown state-of-art performance for analyzing big data because of their sophisticated structures and considerable computational power. Traditional models for a machinery-monitoring system have highly relied on features selected by human experts. In addition, the representational power of such models fails as the data distribution becomes complicated. On the other hand, deep-learning models automatically select highly abstracted features during the optimization process, and their representational power is better than that of traditional neural network models. However, the applicability of deep-learning models to the field of prognostics and health management (PHM) has not been well investigated yet. This study integrates the "residual fitting" mechanism inherently embedded in the wavelet transform into the convolutional neural network deep-learning structure. As a result, the architecture combines a signal smoother and classification procedures into a single model. Validation results from rotor vibration data demonstrate that our model outperforms all other off-the-shelf feature-based models.

Optimal Design of Batch-Storage Network (회분식 공정-저장조 그물망 구조의 최적설계)

  • 이경범;이의수
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.4 no.6
    • /
    • pp.802-810
    • /
    • 1998
  • The purpose of this study is to find the analytic solution of determining the optimal capacity of processes and storages to meet the product demand. Recent trend to reduce product delivery time and to provide high quality product to customer requires the increasing capacity of storage facilities. However, the cost of constructing and operating storage facilities is becoming substantial because of increasing land value, environmental and safety concern. Therefore, reasonable decision making about the capacity of processes and storages is important subject for industries. The industrial solution for this subject is to use the classical economic lot sizing method, EOQ(Economic Order Quantity) model, trimmed with practical experience but the unrealistic assumption of EOQ model is not suitable for the chemical plant design with highly interlinked processes and storages. This study, a first systematic attempt for this subject, clearly overcomes the limitation of classical lot sizing method. The superstructure of the plant consists of the network of serially and/or parallelly interlinked processes and storages. A novel production and inventory analysis method, PSW(Periodic Square Wave) model, is applied. The objective function of optimization is minimizing the total cost composed of setup and inventory holding cost. The advantage of PSW model comes from the fact that the model provide a set of simple analytic solution in spite of realistic description of material flow between process and storage. The resulting simple analytic solution can greatly enhance the proper and quick investment decision for the preliminary plant design confronting diverse economic situation.

  • PDF

Prediction of Etch Profile Uniformity Using Wavelet and Neural Network

  • Park, Won-Sun;Lim, Myo-Taeg;Kim, Byungwhan
    • International Journal of Control, Automation, and Systems
    • /
    • v.2 no.2
    • /
    • pp.256-262
    • /
    • 2004
  • Conventionally, profile non-uniformity has been characterized by relying on approximated profile with angle or anisotropy. In this study, a new non-uniformity model for etch profile is presented by applying a discrete wavelet to the image obtained from a scanning electron microscopy (SEM). Prediction models for wavelet-transformed data are then constructed using a back-propagation neural network. The proposed method was applied to the data collected from the etching of tungsten material. Additionally, 7 experiments were conducted to obtain test data. Model performance was evaluated in terms of the average prediction accuracy (APA) and the best prediction accuracy (BPA). To take into account randomness in initial weights, two hundred models were generated for a given set of training factors. Behaviors of the APA and BPA were investigated as a function of training factors, including training tolerance, hidden neuron, initial weight distribution, and two slopes for bipolar sig-moid and linear function. For all variations in training factors, the APA was not consistent with the BPA. The prediction accuracy was optimized using three approaches, the best model based approach, the average model based approach and the combined model based approach. Despite the largest APA of the first approach, its BPA was smallest compared to the other two approaches.

Energy-efficient Custom Topology Generation for Link-failure-aware Network-on-chip in Voltage-frequency Island Regime

  • Li, Chang-Lin;Yoo, Jae-Chern;Han, Tae Hee
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.16 no.6
    • /
    • pp.832-841
    • /
    • 2016
  • The voltage-frequency island (VFI) design paradigm has strong potential for achieving high energy efficiency in communication centric manycore system-on-chip (SoC) design called network-on-chip (NoC). However, because of the diminished scaling of wire-dimension and supply voltage as well as threshold voltage in modern CMOS technology, the vulnerability to link failure in VFI NoC is becoming a crucial challenge. In this paper, we propose an energy-optimized topology generation technique for VFI NoC to cope with permanent link failures. Based on the energy consumption model, we exploit the on-chip communication traffic patterns and characteristics of link failures in the early design stage to accommodate diverse applications and architectures. Experimental results using a number of multimedia application benchmarks show the effectiveness of the proposed three-step custom topology generation method in terms of energy consumption and latency without any degradation in the fault coverage metric.

Design of Fingerprints Identification Based on RBFNN Using Image Processing Techniques (영상처리 기법을 통한 RBFNN 패턴 분류기 기반 개선된 지문인식 시스템 설계)

  • Bae, Jong-Soo;Oh, Sung-Kwun;Kim, Hyun-Ki
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.6
    • /
    • pp.1060-1069
    • /
    • 2016
  • In this paper, we introduce the fingerprint recognition system based on Radial Basis Function Neural Network(RBFNN). Fingerprints are classified as four types(Whole, Arch, Right roof, Left roof). The preprocessing methods such as fast fourier transform, normalization, calculation of ridge's direction, filtering with gabor filter, binarization and rotation algorithm, are used in order to extract the features on fingerprint images and then those features are considered as the inputs of the network. RBFNN uses Fuzzy C-Means(FCM) clustering in the hidden layer and polynomial functions such as linear, quadratic, and modified quadratic are defined as connection weights of the network. Particle Swarm Optimization (PSO) algorithm optimizes a number of essential parameters needed to improve the accuracy of RBFNN. Those optimized parameters include the number of clusters and the fuzzification coefficient used in the FCM algorithm, and the orders of polynomial of networks. The performance evaluation of the proposed fingerprint recognition system is illustrated with the use of fingerprint data sets that are collected through Anguli program.

A Study on Wireless LAN Topology Configuration for Enhancing Indoor Location-awareness and Network Performance (실내 위치 인식 및 네트워크 성능 향상을 고려한 무선 랜 토폴로지 구성 방안에 관한 연구)

  • Kim, Taehoon;Tak, Sungwoo
    • Journal of Korea Multimedia Society
    • /
    • v.16 no.4
    • /
    • pp.472-482
    • /
    • 2013
  • This paper proposes a wireless LAN topology configuration method for enhancing indoor location-awareness and improving network performance simultaneously. We first develop four objective functions that yield objective goals significant to the optimal design of a wireless LAN topology in terms of location-awareness accuracy and network performance factors. Then, we develop metaheuristic algorithms such as simulated annealing, tabu search, and genetic algorithm that examine the proposed objective functions and generate a near-optimal solution for a given objective function. Finally, four objective functions and metaheuristic algorithms developed in this paper are exploited to evaluate and measure the performance of the proposed wireless LAN topology configuration method.

On the QoS Behavior of Self-Similar Traffic in a Converged ONU-BS Under Custom Queueing

  • Obele, Brownson Obaridoa;Iftikhar, Mohsin;Kang, Min-Ho
    • Journal of Communications and Networks
    • /
    • v.13 no.3
    • /
    • pp.286-297
    • /
    • 2011
  • A novel converged optical network unit (ONU)-base station (BS) architecture has been contemplated for next-generation optical-wireless networks. It has been demonstrated through high quality studies that data traffic carried by both wired and wireless networks exhibit self-similar and long range dependent characteristics; attributes that classical teletraffic theory based on simplistic Poisson models fail to capture. Therefore, in order to apprehend the proposed converged architecture and to reinforce the provisioning of tightly bound quality of service (QoS) parameters to end-users, we substantiate the analysis of the QoS behavior of the ONU-BS under self-similar and long range dependent traffic conditions using custom queuing which is a common queuing discipline. This paper extends our previous work on priority queuing and brings novelty in terms of presenting performance analysis of the converged ONU-BS under realistic traffic load conditions. Further, the presented analysis can be used as a network planning and optimization tool to select the most robust and appropriate queuing discipline for the ONU-BS relevant to the QoS requirements of different applications.

A Study on the Prediction of Optimized Injection Molding Condition using Artificial Neural Network (ANN) (인공신경망을 활용한 최적 사출성형조건 예측에 관한 연구)

  • Yang, D.C.;Lee, J.H.;Yoon, K.H.;Kim, J.S.
    • Transactions of Materials Processing
    • /
    • v.29 no.4
    • /
    • pp.218-228
    • /
    • 2020
  • The prediction of final mass and optimized process conditions of injection molded products using Artificial Neural Network (ANN) were demonstrated. The ANN was modeled with 10 input parameters and one output parameter (mass). The input parameters, i.e.; melt temperature, mold temperature, injection speed, packing pressure, packing time, cooling time, back pressure, plastification speed, V/P switchover, and suck back were selected. To generate training data for the ANN model, 77 experiments based on the combination of orthogonal sampling and random sampling were performed. The collected training data were normalized to eliminate scale differences between factors to improve the prediction performance of the ANN model. Grid search and random search method were used to find the optimized hyper-parameter of the ANN model. After the training of ANN model, optimized process conditions that satisfied the target mass of 41.14 g were predicted. The predicted process conditions were verified through actual injection molding experiments. Through the verification, it was found that the average deviation in the optimized conditions was 0.15±0.07 g. This value confirms that our proposed procedure can successfully predict the optimized process conditions for the target mass of injection molded products.