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Prediction of Etch Profile Uniformity Using Wavelet and
Neural Network

Won Sun Choi, Myo Taeg Lim, and Byungwhan Kim"

Abstract: Conventionally, profile non-uniformity has been characterized by relying on ap-
proximated profile with angle or anisotropy. In this study, a new non-uniformity model for
etch profile is presented by applying a discrete wavelet to the image obtained from a scanning
electron microscopy (SEM). Prediction models for wavelet-transformed data are then con-
structed using a back-propagation neural network. The proposed method was applied to the
data collected from the etching of tungsten material. Additionally, 7 experiments were con-
ducted to obtain test data. Model performance was evaluated in terms of the average predic-
tion accuracy (APA) and the best prediction accuracy (BPA). To take into account randomness
in initial weights, two hundred models were generated for a given set of training factors. Be-
haviors of the APA and BPA were investigated as a function of training factors, including
training tolerance, hidden neuron, initial weight distribution, and two slopes for bipolar sig-
moid and linear function. For all variations in training factors, the APA was not consistent
with the BPA. The prediction accuracy was optimized using three approaches, the best model
based approach, the average model based approach and the combined model based approach.
Despite the largest APA of the first approach, its BPA was smallest compared to the other two
approaches.

Keywords: Back-propagation neural network, plasma etching, model, optimization, uniform-

ity, wavelet.

1. INTRODUCTION

Since the early 1990s, intelligent systems such as
neural networks have been widely used to model
plasma etching and deposition processes [1-3].
Despite the complexity of plasmas, neural networks
have greatly contributed to capture and visualize
nonlinear relationships between process inputs and
etch responses. There exist many etch responses to
model, which may include a typical etch rate,
selectivity, profile, and non-uniformity. Among them,
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the profile was approximated with an angle or
anisotropy. Due to this approximation, detailed
variations along the profile surface were not
sensitively characterized. Previous prediction models
are thus limited in their ability to reveal variations in
profile completely. To circumvent this deficiency
inherent in the conventional metric, a wavelet
technique was recently applied to capture micro
variations along a profile surface [4]. Compared to the
conventional metric, the wavelet-based one
demonstrated improved sensitivity to variations in
process inputs. In the context of plasma etching, non-
uniformity was defined solely for etch rate. Another
non-uniformity for etch profile has never been
presented in literatures mainly due to the approxi-
mation nature of the conventional metric.

In order to gain insight into a profile in progress, a
new method to measure profile non-uniformity must
be defined. In this study, this is accomplished by a
discrete wavelet transformation in conjunction with a
simple formula traditionally employed for non-
uniformity characterization. Moreover, a novel predic-
tion model of profile non-uniformity is constructed
using a back-propagation neural network. As a
function of training factors, the performance is
evaluated in terms of the average and best prediction
accuracy. For this modeling, a 2*"' fractional factorial
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Fig. 1. A schematic of a Pinnacle 8000 helicon plasma
etch system.

experiment [5] was conducted while collecting
additional experiments. The data were collected from
the etching of a tungsten material in a SF¢ plasma.
This process was empirically modeled and related etch
mechanisms were investigated [2].

2. EXPERIMENTAL DATA

A schematic of a Pinnacle 8000 helicon plasma
etch system is shown in Fig. 1 A high density plasma
is produced in a source quartz by coupling 13.56 Mhz
radio frequency (RF) power to an antenna via a
corresponding network. The coil surrounding the
quartz provides an efficient transfer of energy into the
center of the plasma as well as an effective
confinement of the plasma, thereby increasing plasma
density. A magnetic bucket encircling the process
chamber comprised of 24 permanent magnets with
alternating polarity, yielding highly uniform plasma.
The temperature of the chuck holder was controlled
by a SC-90 TAITAC cooling pump. By cooling the
coolant through the heat exchanger and subsequently
by compressing it with the pump, the substrate
temperature could be cooled down to a temperature as
low as =50 C. The chamber pressure is maintained at
the base level of 10 Torr by using a turbo pump and
rotary pumps. Gas flow rates are precisely controlled
through mass flow controllers.

Test patterns were fabricated on 8-inch diameter
silicon wafers of (100) orientation. The pattern was
structured as a 3500 A W with a 600 A TiN diffusion
barrier layer and a 500 A Ti adhesive film on a 4000
A silicon dioxide film. Deep ultra-violet photoresist
of 1 ym was spun and baked for 30 minutes at 120°C.
To examine variations in etch profiles, a scanning
electron microscopy was used to take pictures of
etched patterns.

The process was characterized with a 2*' fractional

Table 1. Experimental ranges of input factors.

Factor Range Units
Source Power 1500 - 2500 watts
Bias Power 0-30 watts
SFq 80-120 sccm
Temperature -50-10 C

factorial experiment. The factors that were varied in
the design include a RF source power, bias power,
chuck temperature, and SF, flow rate. The
experimental range is contained in Table 1. To
evaluate the appropriateness of the model, 7 additional
experiments were conducted.

3. WAVELET THEORY AND
NEURAL NETWORK

3.1. Wavelet theory

Due to the property of efficient space-frequency
localization, a wavelet can effectively be used to
examine variations of a signal or an image. The DWT
is mathematically detailed in previous works [6].
Rather than repeating it, the fundamentals of DWT are
briefly explained. When the DWT is applied to a
function f, f can be approximated as

FO=2(fbjo)Bjox+ 2, 2V (1)
k J>j0 k ’

where ¢ is an orthonomal basis for the scaled

subspace ¥; of a central subspace ¥, . The other i
forms an orthonomal basis for the subspace W, the

complement of ¥;. Both (/,8;,4) and (/%)

are referred to as the approximation (or scale) and
detail (or wavelet) coefficients, respectively. As
represented in (1), f can be approximated as the sum

of the approximation of f at level j, in addition to the
details concerning f'at j> j, . For a given image,

the decomposition is successively conducted by a pair
of low and high pass filters, separately in two
directions. The low and high pass filters provide the
approximation and details of the image, respectively.
The decomposition is first applied to each row of an
image array. The high pass and low pass sub-images
thereby obtained are each separately filtered column-
wise, resulting in 4 sub-images corresponding to low-
low-pass, low-high-pass, high-low-pass, and high-
high pass row column filtering, respectively. The
DWT of a 2-dimensional image is mathematically
detailed [7].

3.2. Neural networks
Although many paradigms were available, a back-
propagation neural network (BPNN) [8] was chosen.



258 International Journal of Control, Automation, and Systems Vol. 2, No. 2, June 2004

Fig. 2. Extracted profile from an original SEM photo.

The BPNN consisted of three layers, input, hidden
and output. The input layer receives external
information such as the four process factors (source
power, bias power, SFs flow rate, substrate
temperature). Then, the output neurons produce
certain predictions. Here, the number of output
neurons was set to unity since only one profile
nonuniformity was modeled. The BPNN also
incorporates “hidden” layers of neurons that do not
interact with the outside world, but assists in
performing nonlinear feature extraction on the data
provided by the input and output layers. The number
of hidden neurons is an import training factor. The
number of hidden layers was set to unity in this study.
The error the network attempts to minimize is the
accumulated error ( £) of all the input-output pairs,
which for a given test input pattern is expressed as

14
E=05) (d;—out;)” )

i=1

where p is the number of output neurons, d; is the
desired output of the ith neuron in the layer, and out; is
the calculated output from the same neuron. In the BP
algorithm, the error is to be minimized via the
gradient descent optimization, in which the weights
are adjusted in the direction of decreasing the E in (2).
A basic weight update scheme, commonly known as
the generalized delta rule [8], is expressed as

I/Vi,_]',k(’n*‘l) = Vl/i,j,k(m)+'7AW/i,j,k(m) R (3)

where W;;, is the connection strength between the jth
neuron in the layer (k-1) and the ith neuron in the
layer k. Other m and # indicate the iteration number
and an adjustable parameter so called “learning rate,”
respectively. By adjusting weighted connections
recursively using the rule in (3) for all units in the
network, the accumulated £ over all the input vectors
is to be minimized.

4. RESULTS
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Fig. 3. Wavelet transformed SEM image.

4.1. DWT-characterized profile non-uniformity

A SEM photo is shown in Fig. 2. The etching
condition is 2000 W source power, 15 W bias power, -
20C temperature, and 100 sccm SFg. As represented
in Fig. 2, there exists some curvature in the profile,
which cannot be quantified using the conventional
metric. To circumvent this difficulty, wavelet
technique is used to characterize micro variations on
the profile surface. The SEM photo was scanned using
a scanner of 150 dpi resolution in a gray scale. An
image file of 650 by 500 was then obtained, from
which the profile image of 96 by 96 was cut by means
of iPhotoPlus 4. The profile was converted in the bit
map format rather than in JPEG format so as to
prevent any loss of information. When DWT is
applied to the BMP file, 4 blocks appear on the screen
as depicted in Fig. 3, each corresponding to an
approximation of the horizontal, vertical and diagonal
blocks.

A combined image (Im.) of the vertical and
horizontal images, represented as Im, and Imy
respectively, are obtained as

Im, = Im > +1m,>2 . 4

A profile contour was then extracted by applying
the histogram method to the combined image
characterized by (4). Using the gray levels of images,
a rare profile image was made and is depicted in Fig.
4. The DWT was then implemented on the image in
Fig. 4 four times consecutively. The original image
was finally compressed down to a 3 by 3. The
resulting nine coefficients are contained in Table 2.
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Table 2. Wavelet coefficients at 4 scale level.

Table 3. Experimental ranges of training factors.
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Fig. 4. Extracted profile contour using a histogram
method.

Wavelet coefficients contained in Table 2 were
subsequently averaged with a simple metric defined as

= 5)

where v; indicates each compressed wavelet
coefficient. Another n represents the total number of
wavelet coefficients, in this case 9. The nonuniformity
is then computed as

—V|
¢ €1x100
7 NG

c

Non-uniformity =

where V. is obtained for the profile at the center.
Another V, is obtained as the mean for the four
profiles at about a one inch distance from the edge.

4.2. Optimization of prediction model

The prediction accuracy of the predictive model is
optimized in the following three approaches. In each
optimization, the prediction accuracy is examined as a
function of training factors. The effects of training
factors are investigated from the standpoint of the
average prediction accuracy (APA) and best
prediction accuracy (BPA). The BPNN model was
trained with 7 experiments and tested with 7
experiments. The prediction accuracy was quantified
with the root-mean squared error (RMSE) metric
defined as

RMSEP = M

Factor Range
TT 0.02-0.16
HN 2-9
IWD T1.6-3.0
GBS 0.3-3.0
GL 0.3-3.0

Table 4. Prediction accuracy versus TT.

T APA BPA
0.02 14.05 11.65
0.04 14.05 11.78
0.06 14.05 11.82
0.08 14.05 11.86
0.10 14.06 11.90
0.12 14.07 11.95
0.14 14.08 12.00
0.16 14.09 12.05

where P is the size of test data, 7}, is the measured etch
response for the pth input, and O, is the corresponding
prediction.

4.2.1 Best model-based optimization

In the first approach, the prediction accuracy is
optimized by optimizing the BPA as a function of
training factors, including training tolerance (TT),
hidden neuron (HN), the gradients of bipolar sigmoid
function (GBS) and linear function (GL), and initial
weight deviation (IWD). Particularly, a number of
models were generated to take into account the
randomness in IWD. In this way, an optimal plasma
model was constructed [3]. The number of model
generation was set to 200. The experimental ranges
for the factors are included in Table 3. First, the TT
effect on the prediction accuracy is examined and
results are contained in Table 4. The other factors
were set to their default values. In other words, the
HN, IWD, GBS and GL were set to 4, £ 1.0, and 1.0,
respectively. Both the average and best RMSEPs are
contained in Table 4. As contained in Table 4, the
APA varies little with the TT. On the other hand, the
BPA increases with increasing TT. This clearly
illustrates that both behaviors are completely different.
This was once demonstrated in modeling Langmuir
probe discharge data [3]. One BPA is determined at
0.02 and is numerically equal to 11.65 %.

The HN number was then experimentally varied.
Here, the TT was set to 0.02 for the best model
obtained with variations in the TT. The other factors
were set to their default values stated earlier. Results
are shown in Table 5. For the HN between 4 and 9,
the APA varied little with HN. When decreasing the
HN to the value smaller than 4, the APA increases
appreciably. Meanwhile, the BPA varies randomly.
The inconsistency is thus clear between the APA and
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Table 5. Prediction accuracy versus HN.

Table 8. Prediction accuracy versus GL.

HN APA BPA GL APA BPA
2 15.02 11.16 0.3 16.29 8.38
3 14.34 10.77 0.5 17.69 7.86
4 14.06 11.65 0.7 19.23 . 7.55
5 14.06 10.22 1.0 17.89 8.32
6 13.95 11.66 1.5 26.47 8.80
7 13.94 11.05 2.0 31.18 8.37
8 13.93 10.56 2.5 35.66 9.07
9 13.88 10.73 3.0 39.78 10.71
Table 6. Prediction accuracy versus IWD. Table 9. Average model-based prediction accuracy.
IWD APA BPA IWD GBS GL
1.6 14.60 9.56 APA  BPA APA BPA APA BPA
+1.8 14.94 9.30 14.18 10.66 1393 12,78
t70 15.33 9.33 13.89 1142 13.80 12.58
+979 15.86 8.87 13.81 11.59 - 12.60
£24 1647 853 02 1022 A 1210
i;g :;é; S;; 1422  10.01 13.84 . 13.84  12.09
+3'0 18'72 8.36 14.54 10.06 13.86 13.23 13.86 12.08
L : : 1499 976 1398 13.37 13.88 12.09
Table 7. Prediction accuracy versus GBS. APA increases considerably with a decrease in the
GBS APA BPA gradient. Meanwhile, the BPA continues to decrease
03 245 383 until the GBS degreases to 1.0. For the QBSS less thqn
0.5 21.83 2 07 1.0, .the BPA varies r'andomly. One og)tlmlzed BPA is
0.7 19.97 2.85 obtained at' 0.5 and is eque}l to 8.07%. Qompared to
the preceding model, the improvement is tiny. The
1.0 17.89 8.32 alternate GL was adjusted by setting the other factors
1.5 15.71 9.60 set to their optimized values. Results are shown in
2.0 14.84 9.72 Table 8. In general, the APA decreases with a
25 14.37 9.90 decrease in the GL. This is contrary to what was
3.0 14.19 10.26 observed for variations in the GBS. Random behavior

BPA. One optimized BPA is obtained at five hidden
neurons and its RMSEP is 10.22. Approximately
12.2% improvement is thus achieved with respect to
the preceding model optimized as a function of TT.
The magnitude of IWD was then adjusted and
results are shown in Table 6. Here, the TT and HN
were set to 0.02 and 5 with the other factors set at
their default values. The APA decreases with a
reduction in IWD. In contrast, the BPA increases for
the same variations in IWD. One optimized BPA is
achieved at £2.8 and is numerically equal to 8.32%.
With the control of IWD, the BPA is thus improved
by about 18.5% with respect to the preceding model
obtained with variations in HN. This large amount of
improvement indicates that the IWD plays an
important role in affecting the prediction accuracy. As
in the case of TT, the behavior of APA was
inconsistent with that for the BPA. The GBS was then
tuned and results appear in Table 7. The other TT, HN,
and IWD were set to those optimized previously. The

in the BPA with the GL is depicted in Table 8. This is
somewhat similar to that shown in Table 7. From this
observation, it is thus noticed that both gradient
affects are similar in view of the BPA. In contrast,
they are opposite with respect to the APA. One
optimized BPA is obtained at 0.7 and is equal to about
7.55%. Thus, the BPA was improved by about 6.4%
over the preceding model.

4.2.2 Average model-based optimization

In the second approach, the prediction accuracy is
optimized on the basis of APA. As seen in Table 4,
the APA varies little with a variation in TT. The APA
has the same value at four TTs, 0.02, 0.04, 0.06, and
0.08. The average model at 0.02 was selected. The
corresponding BPA is 11.78%. Next, the HN was
varied while setting the TT at 0.04. The other factors
were set to their default vales. As contained in Table 5,
the APA is optimized at 9 HN and the corresponding
BPA is 10.73%. Table 9 contains the effects of the
other training factors. In Table 9, the IWD was varied
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Table 10. Combined model-based prediction accuracy.

IWD GBS GL
APA  BPA APA BPA APA BPA
13.86 1297 1637 890 1385 11.15
13.86 12.60 1502 9.14 13.88 10.66
13.88 11.96 1440 10.01 1394 1047
13.93  10.56  14.02 1022

1402 1022 1391 1175 1427 10.40
1426 10.18 13.87 12.05 1452 10.37
1456  9.94 13.88 1236 14.80 10.01
1499 976 13.89 1278 1510  9.56

from £ 0.4 to £ 1.8 by 0.2. The experimental ranges
for the other two factors, GBS and GL, are identical to
those in Table 7 and Table &, respectively. For
variations in IWD, as seen from Table 9, the APA is
optimized at 0.4 and +0.6. Here, both TT and HN
were fixed at 0.04 and 9, respectively, while setting
both GBS and GL to 1.0. The model obtained at +0.6
was selected and the corresponding APA is 13.78%.
For variations in GBS, the model has the smallest
APA at 1.0, which is equal to about 13.78%. This is
identical to that obtained in the preceding case. For
the variations in the other GL, the smallest APA is
almost identical to the preceding one. [n this sense,
both gradient effects on the APA of the model were
insignificant. From this analysis, the IWD played the
most significant role in improving the APA.
Compared to the APA (19.23%) of the optimized
model with the first approach, that optimized with the
second one yields about 28.3% of improvements. In
contrast, the BPA of the corresponding model for the
second approach is considerably larger than that
(7.55%) for the first approach. This means that the
first approach is better than the second one from the
standpoint of the BPA.

4.2.3 Combined model-based optimization

The third approach is based on the minimization of
the sum of the APA and BPA. From Table 4, the sum
is minimized at 0.02 TT and is equal to 25.71%. For
variations in HN, the smallest sum is obtained at 8 HN
and is equal to about 24.50%. For the other three
training factors, the APA and BPA are contained in
Table 10. For variations in IWD, as calculated from
Table 10, the sum is minimized at 1.2, and it is about
24.24%. Compared to the preceding model, the sum is
slightly decreased. Here, the HN was fixed at 8. As
represented in Table 10, the minimized sum for
variations in either gradient is the same as that
obtained with the variation in TWD. Both APA and
BPA of the finally determined model based on the
sum are 14.02% and 10.22%, respectively. From the
standpoint of the BPA, the optimized model with the
third approach is superior to that for the second
approach, but inferior to that for the first approach. It

is therefore concluded that the first approach is the
most appropriate when trying to achieve a predictive
model with the highest BPA.

5. CONCLUSIONS

A new metric for profile uniformity was defined by
using a discrete wavelet transform. Compared to the
conventional metric, the DWT-based metric is
advantageous in that it can characterize complex
variations along the etch profile surface in detail. In
conjunction with the neural network, a predictive
model of profile nonuniformity was constructed. The
effects of training factors were optimized in three
ways. More performance was examined with respect
to the average and best prediction accuracy. The first
best model-based optimization method was identified
to be the most appropriate way in achieving a
predictive model with the highest predictive ability.
The constructed model can facilitate physical
interpretation for profile nonuniformity as well as its
optimization.
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