• Title/Summary/Keyword: network monitoring

Search Result 3,289, Processing Time 0.038 seconds

A Wireless Sensor Network Technique and its Application in Regional Landslide Monitoring (광역적 산사태 모니터링을 위한 무선센서네트워크 기술의 적용)

  • Jeong, Sang-Seom;Hong, Moon-Hyun;Kim, Jung-Hwan
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.9
    • /
    • pp.19-32
    • /
    • 2018
  • In this study, the applicability and practicality of landslides monitoring by using wireless sensor network (WSN) was analysed. WSN system consists of a sensor node for collecting and transmitting data using IEEE 802.14e standard, a gateway for collecting data and transmitting the data to the monitoring server. In the topology of the sensor network, a highly flexible and reliable mesh type was adopted, and three testbeds were chosen in each location of Seoul metropolitan area. Soil moisture sensors, tensiometers, inclinometers, and a rain gauge were installed at each testbed and sensor node to monitor the landslide. For the estimation of the optimal network topology between sensor nodes, the susceptibility assessment of landslides, forest density and viewshed analysis of terrain were conducted. As a result, the network connection works quite well and measured value of the volumetric water content and matric suction simulates well the general trend of the soil water characteristic curve by the laboratory test. As such, it is noted that WSN system, which is the reliable technique, can be applied to the landslide monitoring.

A Study on the Design of Monitoring Architecture for the Grid NOC (그리드 NOC를 위한 모니터링 구조의 설계에 관한 연구)

  • 하지아;안성진;이혁로;노민기
    • Proceedings of the Korea Society for Industrial Systems Conference
    • /
    • 2002.06a
    • /
    • pp.97-106
    • /
    • 2002
  • Grid makes it possible to cooperate with other network area by sharing and using distributed resources. In order to manage effectively large-scale Grid network resources, Grid NOC needs monitoring architecture that can manage distributed resources in one time. Being restricted within specific managing area, conventional network management system has limitation in extension of managing area and in general management of heterogeneous resource. In this paper, we design a monitoring architecture that can take in the situation and has scalability. In the monitoring architecture the network areas publish information in a common directory service, and then Grid NOC can connect to the network areas directly by using this information. Therefore, it makes us possible to manage overall large-scale resource of Grid network reducing load.

  • PDF

Development of engine room monitoring system complied with IEC 61162-3 international standards for ship's network (IEC 61162-3 선박네트워크 국제표준 적합 기관실모니터링시스템 개발)

  • Kim, Jong Hyun;Yu, Yung Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.2
    • /
    • pp.183-191
    • /
    • 2013
  • International network standards for SOLAS ship are composed of instrument network that controls and monitors machine in real time, shipboard control network that controls and monitors system through computer by human and telecommunication network that connects ship and shore. This paper describes development of stack for instrument network protocol complied with NMEA 2000 that is IEC 61162-3 international standards for SOLAS ship and also that of engine room monitoring system using the developed stack. Developed engine room monitoring system is certified by NMEA according to standards that require to pass about 1,600 test procedures.

Alarm Diagnosis of RCP Monitoring System using Self Dynamic Neural Networks (자기 동적 신경망을 이용한 RCP 감시 시스템의 경보진단)

  • Yu, Dong-Wan;Kim, Dong-Hun;Seong, Seung-Hwan;Gu, In-Su;Park, Seong-Uk;Seo, Bo-Hyeok
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.49 no.9
    • /
    • pp.512-519
    • /
    • 2000
  • A Neural networks has been used for a expert system and fault diagnosis system. It is possible to nonlinear function mapping and parallel processing. Therefore It has been developing for a Diagnosis system of nuclear plower plant. In general Neural Networks is a static mapping but Dynamic Neural Network(DNN) is dynamic mapping.쪼두 a fault occur in system a state of system is changed with transient state. Because of a previous state signal is considered as a information DNN is better suited for diagnosis systems than static neural network. But a DNN has many weights so a real time implementation of diagnosis system is in need of a rapid network architecture. This paper presents a algorithm for RCP monitoring Alarm diagnosis system using Self Dynamic Neural Network(SDNN). SDNN has considerably fewer weights than a general DNN. Since there is no interlink among the hidden layer. The effectiveness of Alarm diagnosis system using the proposed algorithm is demonstrated by applying to RCP monitoring in Nuclear power plant.

  • PDF

Dimensioning of linear and hierarchical wireless sensor networks for infrastructure monitoring with enhanced reliability

  • Ali, Salman;Qaisar, Saad Bin;Felemban, Emad A.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.9
    • /
    • pp.3034-3055
    • /
    • 2014
  • Wireless Sensor Networks have extensively been utilized for ambient data collection from simple linear structures to dense tiered deployments. Issues related to optimal resource allocation still persist for simplistic deployments including linear and hierarchical networks. In this work, we investigate the case of dimensioning parameters for linear and tiered wireless sensor network deployments with notion of providing extended lifetime and reliable data delivery over extensive infrastructures. We provide a single consolidated reference for selection of intrinsic sensor network parameters like number of required nodes for deployment over specified area, network operational lifetime, data aggregation requirements, energy dissipation concerns and communication channel related signal reliability. The dimensioning parameters have been analyzed in a pipeline monitoring scenario using ZigBee communication platform and subsequently referred with analytical models to ensure the dimensioning process is reflected in real world deployment with minimum resource consumption and best network connectivity. Concerns over data aggregation and routing delay minimization have been discussed with possible solutions. Finally, we propose a node placement strategy based on a dynamic programming model for achieving reliable received signals and consistent application in structural health monitoring with multi hop and long distance connectivity.

A Study on the Design of Monitoring Architecture for the Grid NOC (그리드 NOC를 위한 모니터링 구조의 설계에 관한 연구)

  • 하지아;안성진;이혁로;노민기
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.7 no.4
    • /
    • pp.90-99
    • /
    • 2002
  • Grid makes it possible to cooperate with other network area by sharing and using distributed resources. In order to manage effectively large-scale Grid network resources, Grid NOC needs monitoring architecture that can manage distributed resources in one time. Being restricted within specific managing area conventional network management system has limitation in extension of managing area and in general management of heterogeneous resource. In this paper, we design a monitoring architecture that can take in the situation and has scalability. In the monitoring architecture the network areas publish information in a common directory service, and then Grid NOC can connect to the network areas directly by using this information. Therefore, it makes us possible to manage overall large-scale resource of Grid network reducing load.

  • PDF

An image-based deep learning network technique for structural health monitoring

  • Lee, Dong-Han;Koh, Bong-Hwan
    • Smart Structures and Systems
    • /
    • v.28 no.6
    • /
    • pp.799-810
    • /
    • 2021
  • When monitoring the structural integrity of a bridge using data collected through accelerometers, identifying the profile of the load exerted on the bridge from the vehicles passing over it becomes a crucial task. In this study, the speed and location of vehicles on the deck of a bridge is reconfigured using real-time video to implicitly associate the load applied to the bridge with the response from the bridge sensors to develop an image-based deep learning network model. Instead of directly measuring the load that a moving vehicle exerts on the bridge, the intention in the proposed method is to replace the correlation between the movement of vehicles from CCTV images and the corresponding response by the bridge with a neural network model. Given the framework of an input-output-based system identification, CCTV images secured from the bridge and the acceleration measurements from a cantilevered beam are combined during the process of training the neural network model. Since in reality, structural damage cannot be induced in a bridge, the focus of the study is on identifying local changes in parameters by adding mass to a cantilevered beam in the laboratory. The study successfully identified the change in the material parameters in the beam by using the deep-learning neural network model. Also, the method correctly predicted the acceleration response of the beam. The proposed approach can be extended to the structural health monitoring of actual bridges, and its sensitivity to damage can also be improved through optimization of the network training.

The Analysis on the Upsteam band Signal in the HFC Access Network (HFC 가입자망 상향대역 신호분석에 관한 연구)

  • 장문종;김선익;이진기
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2004.10c
    • /
    • pp.142-144
    • /
    • 2004
  • To provide more qualified data service on the HFC(Hybrid-Fiber Coaxial) access network, the channel characteristics of upstream transmission band should be carefully investigated and analysed. It will be easier to do network management if the monitoring system for noise measurement in the network is available, In this paper, noise analysis method and the frequency selection method in the upstream band for duplex transmission are suggested. And, Data aquisition device for the signal measurement Is implemented. With this network monitoring system, field test and the result from the collected data are described.

  • PDF

Simulation and Analysis of the Network Traffic of a Power Infrastructure Defense System (광역 방어시스템의 통신 트래픽 모사와 분석)

  • Baek, Yoon-Ki;Yi, Keon-Young
    • Proceedings of the KIEE Conference
    • /
    • 2006.07a
    • /
    • pp.179-180
    • /
    • 2006
  • The real time monitoring of the power systems covering wide area are essential for the stable operation and control of the power system. Synchronized phasor measurement is a key for the precise monitoring and control of the power systems. In this paper, to suggest an appropriate network topology of Power Infrastructure Defense System(PIDS) and to estimate the maximum network bandwidth with using the network analyzer, we simulate a PIDS and analyze the network traffic.

  • PDF

A Study of Remote Welding Quanlity Monitoring System using TCP/IP in Resistance Spot Welding (TCP/IP 기반의 원격 저항 점 용접 품질 모니터링 시스템에 관한 연구)

  • 최윤석;이세헌
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.320-323
    • /
    • 2001
  • Nowadays, computer network has been rapidly developed. And we have made efforts to use it in wide field. So we can exchange data without spacial restriction using internet. If we develop monitoring system using internet, we have the effect of reducing time and space. Therefore, in this paper, we developed TCP/IP network and client/server system. And We applied them to resistance spot welding quality monitoring system.

  • PDF