• Title/Summary/Keyword: network localization

Search Result 449, Processing Time 0.033 seconds

SDS-TWR based Location Compensation Mechanism for Localization System in Wireless Sensor Network

  • Lee, Dong-Myung
    • Journal of Engineering Education Research
    • /
    • v.13 no.5
    • /
    • pp.76-80
    • /
    • 2010
  • In this paper, the Location Compensation Mechanism using equivalent distance rate ($LCM_{edr}$) for localization system based on SDS-TWR (Symmetric Double-Sided Two-Way Ranging) in wireless sensor network is proposed. The performance of the mechanism is experimented in terms of two types of the localization tracking scenarios of indoor and outdoor environments in university campus. From the experimentations, the compensation ratio in the $LCM_{edr}$ is better than that in SDS-TWR about 90% in indoor/outdoor environments in scenario 1 but also is better than that of SDS-TWR about 91.7% in indoor environment and about 100% in outdoor environment in scenario 2 respectively.

  • PDF

Performance analysis of GCC-PHAT-based sound source localization for intelligent robots (지능형 로봇을 위한 GCC-PHAT 기반 음원추적 기술의 성능분석)

  • Park, Beom-Chul;Ban, Kyu-Dae;Kwak, Keun-Chang;Yoon, Ho-Sup
    • The Journal of Korea Robotics Society
    • /
    • v.2 no.3
    • /
    • pp.270-274
    • /
    • 2007
  • In this paper, we present a Sound Source Localization (SSL) based GCC (Generalized Cross Correlation)-PHAT (Phase Transform) and new measurement method of angle with robot auditory system for a network-based intelligent service robot. The main goal of this paper is to analysis performance of TDOA and GCC-PHAT sound source localization method and new angle measurement method is compared. We use GCC-PHAT for measuring time delays between several microphones. And sound source location is calculated by using time delays and new measurement method of angle. The robot platform used in this work is wever-R2, which is a network-based intelligent service robot developed at Intelligent Robot Research Division in ETRI.

  • PDF

Efficient Implementation of GMDA-based DOA Technique Using Pre-training Phase Unwrapping for Source Localization

  • Sang-Ick Kang;Seongbin Kim;Sangmin Lee
    • Journal of Internet Technology
    • /
    • v.21 no.3
    • /
    • pp.841-847
    • /
    • 2020
  • In this paper, a novel technique that improves the performance of generalized mixture decomposition algorithm (GMDA) based on pre-training phase unwrapping. From the investigation of the GMDA scheme, it was discovered that the conventional GMDA technique cannot fully consider phase unwrapping, because the estimated inter-channel phase difference (IPD) slope is initialized randomly. To avoid this phenomenon, the proposed GMDA approach initialized the IPD slope from the data of low-frequency bins. Experimental results show that comparing to the conventional GMDA technique, the proposed GMDA technique based on pre-training phase unwrapping obtains a lower estimation error. When integrated into a source localization system, the result of source localization is improved.

Localization of Mobile Robot using Ultrasonic Sensor Network (초음파 센서 네트워크를 이용한 이동로봇의 위치 및 헤딩 추정)

  • Cheon, Hyo-Seok;Hwang, Keun-Woo;Park, Seung-Kyu;Yoon, Tae-Sung
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1844-1845
    • /
    • 2011
  • In this paper, we compared several localization methods for indoor mobile robot navigation using a global ultrasonic sensor network. To estimate the pose of mobile robot in the sensor network, the range or range difference information with or without robot kinematics is used. Simulation results showed that the localization methods with robot kinematics have better performances.

  • PDF

An Indoor Localization Algorithm based on Improved Particle Filter and Directional Probabilistic Data Association for Wireless Sensor Network

  • Long Cheng;Jiayin Guan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.11
    • /
    • pp.3145-3162
    • /
    • 2023
  • As an important technology of the internetwork, wireless sensor network technique plays an important role in indoor localization. Non-line-of-sight (NLOS) problem has a large effect on indoor location accuracy. A location algorithm based on improved particle filter and directional probabilistic data association (IPF-DPDA) for WSN is proposed to solve NLOS issue in this paper. Firstly, the improved particle filter is proposed to reduce error of measuring distance. Then the hypothesis test is used to detect whether measurements are in LOS situations or NLOS situations for N different groups. When there are measurements in the validation gate, the corresponding association probabilities are applied to weight retained position estimate to gain final location estimation. We have improved the traditional data association and added directional information on the original basis. If the validation gate has no measured value, we make use of the Kalman prediction value to renew. Finally, simulation and experimental results show that compared with existing methods, the IPF-DPDA performance better.

Implementation and Empirical Evaluation of Indoor Localization in IEEE 802.15.4 Network (IEEE 802.15.4 네트워크 기반의 실내 위치측정 시스템 구현 및 실험적 분석)

  • Kim, Tae-Woon;Choi, Woo-Yeol;Lim, Hyuk
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.1B
    • /
    • pp.162-175
    • /
    • 2010
  • Currently, geographical information is interpreted and adopted in a wide range of context, and used for meeting diverse demands, such as, battlefield, traffic management, or public safety. With such an explosive increase of location-based applications, a considerable amount of research on the localization technique has been carried out. Among them, RSS (Received Signal Strength)-based approach is used especially for the indoor localization due to intrinsic limitations of the indoor environment. In this paper, we perform theoretical and empirical studies on enhancing the accuracy of the RSS-based localization on the IEEE 802.15.4 network. To this end, we set up an indoor testbed and implement a localization system on it. In addition to the theoretical analysis of the localization algorithm that we used, an empirical analysis on the effect of the factors which affect the accuracy of a localization system is carried out. Finally, we suggest some critical guidelines that should be considered for building a highly accurate localization system.

A Geometric Approach for the Indoor Localization System (실내 위치 측위 시스템을 위한 기하학적 접근 기법)

  • Lim, Yu-Jin;Park, Jae-Sung;Ahn, Sang-Hyun
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.45 no.12
    • /
    • pp.97-104
    • /
    • 2008
  • Location-based services provide customized information or services according to the user's location. The existing localization schemes for outdoor environment are not applicable to the indoor localization system which requires higher accuracy of location estimation than that of the outdoor localization system. In this paper, we employ the received signal strength(RSS) to approximate the distance between a moving target and a reference point and use the triangulation method to estimate the location of the moving target for the indoor localization system in IEEE 802.15.4 wireless PAN(personal area network). For the indoor localization system, we propose a scheme which selects the best reference points to enhance the localization accuracy and adaptively reflects the changes in propagation environments of a moving target to the distance approximation. Through the implementation of the localization system, we have verified the performance of the proposed scheme in terms of the estimation accuracy.

Asset tracking system architecture using sensor network technology (센서 네트워크를 이용한 자산 모니터링 시스템 구조)

  • Kang, Jeong-Hoon;Lee, Min-Goo;Lee, Sang-Won;Ham, Kyung-Sun;Lee, Sang-Hak
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.426-428
    • /
    • 2004
  • Sensor network supports data delivery from physical world to cyber space Sensors get physical events then wireless network transfers sensor data to service server. We use sensor network technology to manage location information of asset. In ubiquitous computing environment, user localization is basic context for intelligent service. A lot of research group make effort to develop low cost localization technology. In this paper, we propose asset monitoring system using wireless sensor network. It is implemented using ad hoc network technology which can be adopted to smart home and this system can monitor the asset location and movement.

  • PDF

A Received Signal Strength-based Primary User Localization Scheme for Cognitive Radio Sensor Networks Using Underlay Model-based Spectrum Access

  • Lee, Young-Doo;Koo, Insoo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.8
    • /
    • pp.2663-2674
    • /
    • 2014
  • For cognitive radio sensor networks (CRSNs) that use underlay-based spectrum access, the location of the primary user (PU) plays an important role in the power control of the secondary users (SUs), because the SUs must keep the minimum interference level required by the PU. Received signal strength (RSS)-based localization schemes provide low-cost implementation and low complexity, thus it is suitable for the PU localization in CRSNs. However, the RSS-based localization schemes have a high localization error because they use an inexact path loss exponent (PLE). Thus, applying a RSS-based localization scheme into the PU localization would cause a high interference to the PU. In order to reduce the localization error and improve the channel reuse rate, we propose a RSS-based PU localization scheme that uses distance calibration for CRSNs using underlay model-based spectrum access. Through the simulation results, it is shown that the proposed scheme can provide less localization error as well as more spectrum utilization than the RSS-based PU localization using the mean and the maximum likelihood calibration.

Local Minimum Problem of the ILS Method for Localizing the Nodes in the Wireless Sensor Network and the Clue (무선센서네트워크에서 노드의 위치추정을 위한 반복최소자승법의 지역최소 문제점 및 이에 대한 해결책)

  • Cho, Seong-Yun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.10
    • /
    • pp.1059-1066
    • /
    • 2011
  • This paper makes a close inquiry into ill-conditioning that may be occurred in wireless localization of the sensor nodes based on network signals in the wireless sensor network and provides the clue for solving the problem. In order to estimate the location of a node based on the range information calculated using the signal propagation time, LS (Least Squares) method is usually used. The LS method estimates the solution that makes the squared estimation error minimal. When a nonlinear function is used for the wireless localization, ILS (Iterative Least Squares) method is used. The ILS method process the LS method iteratively after linearizing the nonlinear function at the initial nominal point. This method, however, has a problem that the final solution may converge into a LM (Local Minimum) instead of a GM (Global Minimum) according to the deployment of the fixed nodes and the initial nominal point. The conditions that cause the problem are explained and an adaptive method is presented to solve it, in this paper. It can be expected that the stable location solution can be provided in implementation of the wireless localization methods based on the results of this paper.