• Title/Summary/Keyword: network based system monitoring

Search Result 1,160, Processing Time 0.035 seconds

A Design of Infrastructure for Control/Monitoring System in the Distributed Computing Environment (분산 컴퓨팅 환경에서의 제어/감시 시스템 개발을 위한 기반 구조 설계)

  • 이원구;박재현
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.547-547
    • /
    • 2000
  • Recently, due to the advance of computer, network and Internet technology, control/monitoring systems are required to process the massive data, At the same time, the software development environment uses more and more component-based methodology. This paper proposes the services for the control /monitoring domain. Especially we define domain-specific interfaces and categories to acquire compatibility between products, and implement architecture for lightweight event service. As it is very important to support compatibility between heterogeneous systems, the proposed system provides modules for the web service and communication protocols based on the XML. And as proposed architecture consists of cluster of servers and Windows 2000's NLB service, it can guarantee more stable operation,

  • PDF

Temperature and Humidity Monitoring Using Ubiquitous Senor Network in Railway Cabin (철도차량 객실 온습도 USN 모니터링 기술)

  • Kwon, Soon-Bark;Cho, Young-Min;Park, Duck-Shin;Park, Eun-Young;Kim, Se-Young;Jung, Mi-Young
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.948-951
    • /
    • 2008
  • Ubiquitous sensor network (USN) based on ZigBee communication protocol has been used in various application fields, such as home-network, intelligent building and machine, logistics, environmental monitoring, military field, security field and etc. The ZigBee is targeted at radio-frequency application that require a low data rate, long battery life and secure network. Especially, the USN system can be applied efficiently to building-indoor where the complex geometry is adopted. In this study, all 90 points of railway cabin indoor were monitored for temperature and humidity using USN technology. All sensors were pre/post-calibrated and the temperature/humidity change were analyzed in a railway cabin in real-time. The results would be useful to develop the cabin heating, ventilating and air conditing (HVAC) system to meet all passengers' thermal comfort regardless of their seat position.

  • PDF

Integrated Fire Monitoring System Based on Wireless Multi-Hop Sensor Network and Mobile Robot (무선 멀티 홉 센서 네트워크와 이동로봇을 이용한 통합 화재 감시 시스템)

  • Kim, Tae-Hyoung;Seo, Gang-Lae;Lee, Jae-Yeon;Lee, Won-Chang
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.2
    • /
    • pp.114-119
    • /
    • 2010
  • Network technology has been developed rapidly for digital service in these days. ZigBee, one of the IEEE 802.15.4 protocols, supporting local communication has become the core technology in the wireless network area. In this paper we designed an integrated fire monitoring system using a mobile robot and the ZigBee sensor nodes which are deployed to monitor fires. When a fire breaks out, the image information of the scene of a fire is transmitted by an autonomous mobile robot and we also monitor the current position of the robot. Furthermore, the data around the place where the fire breaks out and the positions of the sensor nodes can be transmitted to a server via the multi-hop communication in the real time.

Development of real-time monitoring system using wired and wireless networks ina full-scale ship

  • Paik, Bu-Geun;Cho, Seong-Rak;Park, Beom-Jin;Lee, Dong-Kon;Bae, Byung-Dueg
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.2 no.3
    • /
    • pp.132-138
    • /
    • 2010
  • In the present study, the real-time monitoring system is developed based on the wireless sensor network (WSN) and power line communication (PLC) employed in the 3,000-ton-class training ship. The WSN consists of sensor nodes, router, gateway and middleware. The PLC is composed of power lines, modems, Ethernet gateway and phase-coupler. The basic tests show that the ship has rather good environments for the wired and wireless communications. The developed real-time monitoring system is applied to recognize the thermal environments of main-engine room and one cabin in the ship. The main-engine room has lots of heat sources and needs careful monitoring to satisfy safe operation condition or detect any human errors beforehand. The monitoring is performed in two regions near the turbocharger and cascade tank, considered as heat sources. The cabin on the second deck is selected to monitor the thermal environments because it is close to the heat source of main engine. The monitoring results of the cabin show the thermal environment is varied by the human activity. The real-time monitoring for the thermal environment would be useful for the planning of the ventilation strategy based on the traces of the human activity against inconvenient thermal environments as well as the recognizing the temperature itself in each cabin.

Adaptive Network Monitoring Strategy for SNMP-Based Network Management (SNMP 기반 네트워크관리를 위한 적응형 네트워크 모니터링 방법)

  • Cheon, Jin-young;Cheong, Jin-ha;Yoon, Wan-oh;Park, Sang-bang
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.27 no.12C
    • /
    • pp.1265-1275
    • /
    • 2002
  • In the network management system, there are two approaches; the centralized approach based on SNMP and the distributed approach based on mobile agent. Some information changes with time and the manager needs to monitor its value in real time. In such a case, the polling is generally used in SNMP because the manager can query agents periodically. However, the polling scheme needs both request and response messages for management information every time, which results in network traffic increase. In this paper, we suggest an adaptive network monitoring method to reduce the network traffic for SNMP-based network management. In the proposed strategy, each agent first decides its on monitoring period. Then, the manager collects them and approves each agent's period without modification or adjusts it based on the total traffic generated by monitoring messages. After receiving response message containing monitoring period from the manager, each agent sends management information periodically without the request of manager. To evaluate performance of the proposed method, we implemented it and compared the network traffic and monitoring quality of the proposed scheme with the general polling method.

IoT-Based Automatic Water Quality Monitoring System with Optimized Neural Network

  • Anusha Bamini A M;Chitra R;Saurabh Agarwal;Hyunsung Kim;Punitha Stephan;Thompson Stephan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.1
    • /
    • pp.46-63
    • /
    • 2024
  • One of the biggest dangers in the globe is water contamination. Water is a necessity for human survival. In most cities, the digging of borewells is restricted. In some cities, the borewell is allowed for only drinking water. Hence, the scarcity of drinking water is a vital issue for industries and villas. Most of the water sources in and around the cities are also polluted, and it will cause significant health issues. Real-time quality observation is necessary to guarantee a secure supply of drinking water. We offer a model of a low-cost system of monitoring real-time water quality using IoT to address this issue. The potential for supporting the real world has expanded with the introduction of IoT and other sensors. Multiple sensors make up the suggested system, which is utilized to identify the physical and chemical features of the water. Various sensors can measure the parameters such as temperature, pH, and turbidity. The core controller can process the values measured by sensors. An Arduino model is implemented in the core controller. The sensor data is forwarded to the cloud database using a WI-FI setup. The observed data will be transferred and stored in a cloud-based database for further processing. It wasn't easy to analyze the water quality every time. Hence, an Optimized Neural Network-based automation system identifies water quality from remote locations. The performance of the feed-forward neural network classifier is further enhanced with a hybrid GA- PSO algorithm. The optimized neural network outperforms water quality prediction applications and yields 91% accuracy. The accuracy of the developed model is increased by 20% because of optimizing network parameters compared to the traditional feed-forward neural network. Significant improvement in precision and recall is also evidenced in the proposed work.

Design and Implementation of IDLC Channel Bank for Remote Monitoring and Control (원격 감시와 제어를 위한 IDLC 채널뱅크의 설계 및 구현)

  • 하수호;한성화
    • Proceedings of the IEEK Conference
    • /
    • 2000.11a
    • /
    • pp.409-412
    • /
    • 2000
  • In this paper we have implemented CH-MUX system which provides customers with various services, i.e. POTS, ISDN, digital leased line and so on, and supports not only UDLC but IDLC network configuration based on existing optical transmission facilities. Also the RCS equipment has been designed and implemented for remote monitoring and control of CH-MUXs. And then this paper has described IPC procedure and proposed other implemental methods of IPC channel. Service providers will be able to design and construct cost-effective access network with RCS and CH-MUX systems.

  • PDF

Compressed Sensing-Based Multi-Layer Data Communication in Smart Grid Systems

  • Islam, Md. Tahidul;Koo, Insoo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.9
    • /
    • pp.2213-2231
    • /
    • 2013
  • Compressed sensing is a novel technology used in the field of wireless communication and sensor networks for channel estimation, signal detection, data gathering, network monitoring, and other applications. It plays a significant role in highly secure, real-time, well organized, and cost-effective data communication in smart-grid (SG) systems, which consist of multi-tier network standards that make it challenging to synchronize in power management communication. In this paper, we present a multi-layer communication model for SG systems and propose compressed-sensing based data transmission at every layer of the SG system to improve data transmission performance. Our approach is to utilize the compressed-sensing procedure at every layer in a controlled manner. Simulation results demonstrate that the proposed monitoring devices need less transmission power than conventional systems. Additionally, secure, reliable, and real-time data transmission is possible with the compressed-sensing technique.

Open-Source Hardware Module Application for Remote Monitoring of Disaster Prevention (재난관리 원격 모니터링용 오픈소스 하드웨어 모듈 응용)

  • Jin, Kyung-Chan;Lee, Eun-Ju;Lee, Sung-Ho
    • Journal of Sensor Science and Technology
    • /
    • v.24 no.5
    • /
    • pp.299-305
    • /
    • 2015
  • Since the natural disasters such as floods, droughts, heat wave and cold wave are increasing, the need for risk management is necessary to minimize the damage with utilizing IT technology. Also, the monitoring services of disaster response type have been developed and applied. Recently, the open source hardware based on the signal of the sensor, or the monitoring studies have been carried. In this paper, by analyzing a low-cost open source hardware platform such as Beagle board, we examine the utilization of the hardware-based module for sensor monitoring.